Publications by authors named "Faezeh Sadat Hosseini"

α-Glucosidase inhibitors are important in the treatment of type 2 diabetes by regulating blood glucose levels and reducing carbohydrate absorption. The present study focuses on identifying new inhibitors bearing imidazo[1,2-c]quinazoline backbone through multi-step synthesis. The inhibitory potencies of the novel derivatives were tested against Saccharomyces cerevisiae α-glucosidase, revealing IC values ranging from 50.

View Article and Find Full Text PDF

α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, H and C NMR spectroscopy, as well as mass spectrometry and elemental analysis.

View Article and Find Full Text PDF

Background And Purpose: Ghrelin is known as a hunger hormone and plays a pivotal role in appetite, food intake, energy balance, glucose metabolism, and insulin secretion, making it a potential target for the treatment of obesity and type 2 diabetes. The essential maturation step of ghrelin to activate the GHS-R1a is the octanoylation of the Ser3, which is catalyzed by the ghrelin O-acyltransferase enzyme (GOAT) enzyme. Therefore, the inhibition of GOAT may be useful for treating ghrelin-related diseases.

View Article and Find Full Text PDF

-induced ulcers and gastric cancer have been one of the main obstacles that the human community has ever struggled with, especially in recent decades. Several different attempts have been made to eradicate this group. One of the most widely used attempts is to inhibit the critical enzyme that facilitates its survival, the urease enzyme.

View Article and Find Full Text PDF

COVID-19 has recently grown to be pandemic all around the world. Therefore, efforts to find effective drugs for the treatment of COVID-19 are needed to improve humans' life quality and survival. Since the main protease (M) of SARS-CoV-2 plays a crucial role in viral replication and transcription, the inhibition of this enzyme could be a promising and challenging therapeutic target to fight COVID-19.

View Article and Find Full Text PDF

Myocardial infarction causes heart tissue damages; therefore, using non-invasive methods to regenerate the heart tissue could be very helpful. Recent studies claimed that the inhibition of the Wnt signaling could promote cardiac remodeling and induce cardiac regeneration. Therefore, a tankyrase inhibitor to stabilize the AXIN and inhibit the Wnt/β-catenin signaling pathway will induce cardiac regeneration after injury.

View Article and Find Full Text PDF

Background And Purpose: Although pain is one of the most common symptoms of diseases, it is often mismanaged due to limited access to painkillers and ineffectiveness, unacceptable side effects, or the possibility of abuse. However, an alternative approach to existing analgesics is to indirectly increase endogenous pain relief pathways by neprilysin (an enkephalinase) inhibitors. This enzyme breaks down and inactivates enkephalin, dynorphin, endorphins, and their derivatives.

View Article and Find Full Text PDF

Aims: Coronavirus disease 2019 (COVID-19) has appeared in Wuhan, China but the fast transmission has led to its widespread prevalence in various countries, which has made it a global concern. Another concern is the lack of definitive treatment for this disease. The researchers tried different treatment options which are not specific.

View Article and Find Full Text PDF

A series of N-aryl-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanamides derivatives were synthesized in two steps. Phthalic anhydride and phenylalanine are first reacted under microwave radiation to form 2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoic acid, which finally took part in an amidation reaction with different anilines. The final products were characterized by infrared, proton nuclear magnetic resonance (H NMR) and mass spectroscopy techniques.

View Article and Find Full Text PDF