Uterine leiomyomas (UL) are benign tumors that arise in the myometrial layer of the uterus. The standard treatment option for UL is hysterectomy, although hormonal therapies, such as selective progesterone receptor modulators, are often used as temporary treatment options to reduce symptoms or to slow the growth of tumors. However, since the pathogenesis of UL is poorly understood and most hormonal therapies are not based on UL-specific, divergent hormone signaling pathways, hallmarks that predict long-term efficacy and safety of pharmacotherapies remain largely undefined.
View Article and Find Full Text PDFAdapalene (ADA) is believed to be one of the topical treatments utilized commonly in case of acne. Nanostructured lipid carriers (NLCs) have been established as an effective carrier system with certain advantages, for instance increased solubility, drug targeting, controlled drug release, and stability of ADA. This study was conducted to obtain the formulation with a good therapeutic property.
View Article and Find Full Text PDFStudy Question: Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model?
Summary Answer: HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis.
What Is Known Already: Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro.
Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens.
View Article and Find Full Text PDFUterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase-protein kinase B/AKT-mammalian target of rapamycin (PI3K/AKT-mTOR) pathway] is aberrantly expressed in uterine fibroids.
View Article and Find Full Text PDFThe plasticity and vulnerability of the rat spinal cord (SC) during postnatal development has been less investigated compared to other CNS structures. In this study, we determined the effects of thyroid hormonal (TH) deficiency and excess on postnatal growth and neurochemical development of the rat SC. The growth as well as the specific and total activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes of the SC were determined in hypo- and hyperthyroid rat pups at postnatal (P) days P1, P5, P10 and P21 (weaning), and were compared to age-matched untreated normal controls.
View Article and Find Full Text PDFThe effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively.
View Article and Find Full Text PDFObjective: To determine whether programmed cell death 4 (PDCD-4) is altered in autologous leiomyoma and myometrial tissues and what microRNA-21's (miR-21) role is in PDCD-4 expression, apoptosis, and translation.
Design: Laboratory research.
Setting: Academic medical center.