Publications by authors named "Faezeh Jahanmiri-Nezhad"

With the aim of developing a flexible and reliable procedure for superficial muscle innervation zone (IZ) localization, we proposed a method to estimate IZ location using surface electromyogram (EMG) based on robust linear regression. Regression lines were used to model the bidirectional propagation pattern of a single motor unit action potential (MUAP) and visualize the trajectory of the MUAP propagation. IZ localization was performed by identifying the origin of the bidirectional MUAP propagation.

View Article and Find Full Text PDF

This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined.

View Article and Find Full Text PDF

Background: High density surface electromyogram (EMG) techniques with electrode arrays have been used to record spontaneous muscle activity, which is important, both for supporting the diagnosis of neuromuscular diseases and for laboratory based neurophysiological investigations. This short report addresses a practical issue we have experienced during recording of spontaneous muscle activity using electrode arrays from subjects with major neuromuscular disorders.

Findings: We show that recording artifacts can appear similar to spontaneous action potential spikes.

View Article and Find Full Text PDF

Background: Fasciculation potentials (FPs) are important in supporting the electrodiagnosis of Amyotrophic Lateral Sclerosis (ALS). If classified by shape, FPs can also be very informative for laboratory-based neurophysiological investigations of the motor units.

Methods: This study describes a Matlab program for classification of FPs recorded by multi-channel surface electromyogram (EMG) electrodes.

View Article and Find Full Text PDF

Background And Purpose: The relationship between surface electromyography (EMG) and muscle force is essential to assess muscle function and its deficits. However, few studies have explored the EMG-force relation in patients with amyotrophic lateral sclerosis (ALS). The purpose of this study was to examine the EMG-force relation in ALS subjects and its alteration in comparison with healthy control subjects.

View Article and Find Full Text PDF

Examination of spontaneous muscle activity is an important part of the routine electromyogram (EMG) in assessing neuromuscular diseases. The EMG is specifically valuable as a diagnostic test in supporting the diagnosis of amyotrophic lateral sclerosis. High-density surface EMG is a relatively new technique that has until now been used in research but has the potential for clinical application.

View Article and Find Full Text PDF

Background: High-density surface electromyography (HD-SEMG) has recently emerged as a potentially useful tool in the evaluation of amyotrophic lateral sclerosis (ALS). This study addresses a practical constraint that arises when applying HD-SEMG for supporting the diagnosis of ALS; specifically, how long the surface EMG should be recorded before one can be confident that fasciculation potentials (FPs) are absent in a muscle being tested.

Methods: HD-SEMG recordings of 29 muscles from 11 ALS patients were analyzed.

View Article and Find Full Text PDF

The objective of this study was to assess whether there is evidence of motor unit loss in muscles paralyzed by spinal cord injury (SCI), using a measurement called motor unit number index (MUNIX). The MUNIX technique was applied in SCI (n=12) and neurologically intact (n=12) subjects. The maximum M waves and voluntary surface electromyography (EMG) signals at different muscle contraction levels were recorded from the first dorsal interosseous (FDI) muscle in each subject.

View Article and Find Full Text PDF

Motor unit (MU) firing pattern information can be used clinically or for physiological investigation. It can also be used to enhance and validate electromyographic (EMG) signal decomposition. However, in all instances the validity of the extracted MU firing patterns must first be determined.

View Article and Find Full Text PDF

A robust and fast method to assess the validity of a motor unit potential train (MUPT) obtained by decomposing a needle-detected EMG signal is proposed. This method determines whether a MUPT represents the firings of a single motor unit (MU) or the merged activity of more than one MU, and if is a single train it identifies whether the estimated levels of missed and false classification errors in the MUPT are acceptable. Two supervised classifiers, the Single/Merged classifier (SMC) and the Error Rate classifier (ERC), and a linear model for estimating the level of missed classification error have been developed for this objective.

View Article and Find Full Text PDF