There is considerable scientific interest in understanding the strains that tendon cells experience in situ and how these strains influence tissue remodeling. Based on this interest, several analytical techniques have been developed to measure local tissue strains within tendon explants during loading. However, in several cases, the accuracy and sensitivity of these techniques have not been reported, and none of the algorithms are publicly available.
View Article and Find Full Text PDFThe mechanical properties and microstructure of brain tissue, as its two main physical parameters, could be affected by mechanical stimuli. In previous studies, microstructural alterations due to mechanical loading have received less attention than the mechanical properties of the tissue. Therefore, the current study aimed to investigate the effect of ex-vivo mechanical forces on the micro-architecture of brain tissue including axons and glial cells.
View Article and Find Full Text PDFBackground: Ground reaction forces are biomechanical data, providing information to investigate pathological gait. The vertical component of ground reaction force introduces the upward thrust force within gait progression. Although alterations in the vertical component in patients with spinal disorders were addressed in the literature, still the corresponding effect on spinal disorders is a major issue to scrutiny.
View Article and Find Full Text PDFA more Accurate description of the mechanical behavior of brain tissue could improve the results of computational models. While most studies have assumed brain tissue as an incompressible material with constant Poisson's ratio of almost 0.5 and constructed their modeling approach according to this assumption, the relationship between this ratio and levels of applied strains has not yet been studied.
View Article and Find Full Text PDFDespite more than half a century of work on the brain biomechanics, there are still significant unknowns about this tissue. Since the brain is highly susceptible to injury, damage biomechanics has been one of the main areas of interest to the researchers in the field of brain biomechanics. In many previous studies, mechanical properties of brain tissue under sub-injury and injury level loading conditions have been addressed; however, to the best of our knowledge, the role of cell-cell interactions in the mechanical behavior of brain tissue has not been well examined yet.
View Article and Find Full Text PDFBrainstem, which connects the distal part of the brain and the spinal cord, contains main motor and sensory nerves and facilitates communication between the cerebrum, cerebellum, and spinal cord. Due to the complicated anatomy and neurostructure of brainstem, surgical interventions to resect brainstem tumors are particularly challenging, and new approaches to reduce the risk of surgical brain injury are of utmost importance. Although previous studies have investigated the structural anisotropy of brain white matter, the effect of axonal fibers on the mechanical properties of white matter has not yet been fully understood.
View Article and Find Full Text PDFBrain's micro-structure plays a critical role in its macro-structure material properties. Since the structural anisotropy in the brain white matter has been introduced due to axonal fibers, considering the direction of axons in the continuum models has been mediated to improve the results of computational simulations. The aim of the current study was to investigate the role of fiber direction in the material properties of brain white matter and compare the mechanical behavior of the anisotropic white matter and the isotropic gray matter.
View Article and Find Full Text PDFBrain, the most important component of the central nervous system (CNS), is a soft tissue with a complex structure. Understanding the role of brain tissue microstructure in mechanical properties is essential to have a more profound knowledge of how brain development, disease, and injury occur. While many studies have investigated the mechanical behavior of brain tissue under various loading conditions, there has not been a clear explanation for variation reported for material properties of brain tissue.
View Article and Find Full Text PDFAlthough brain, one of the most complex organs in the mammalian body, has been subjected to many studies from physiological and pathological points of view, there remain significant gaps in the available knowledge regarding its biomechanics. This article reviews the research trends in brain biomechanics with a focus on injury. We used published scientific articles indexed by Web of Science database over the past 40 years and tried to address the gaps that still exist in this field.
View Article and Find Full Text PDF