Publications by authors named "Faeze Mehregan"

Organophosphorus (OPs) compounds can endanger human health and the environment by inhibiting the acetylcholinesterase enzyme. But these compounds have been widely used as pesticides due to their effectiveness against all kinds of pests. In this study, a Needle Trap Device (NTD) packed with mesoporous organo-layered double hydroxide (organo-LDH) material and coupled with gas chromatography-mass spectrometry (GC-MS) was employed for the sampling and analysis of OPs compounds (diazinon, ethion, malathion, parathion, and fenitrothion).

View Article and Find Full Text PDF

Aromatic amines are a large group of chemical compounds that have attracted the attention of researchers due to their toxicity and carcinogenicity. This study aimed to develop an efficient method for sampling and analysis of aromatic amines (Aniline, N, N-dimethylaniline, 2-chloroaniline, and 3-chloroaniline) from the vapour phase (headspace) of urine samples. For the implementation of this plan, a needle trap device packed with the three-component adsorbent consisting of nano-Hydroxy Apatite (nHA), Zeolite (Ze), and Metal-Organic Framework (MOF) equipped with GC-FID was employed for the first phase.

View Article and Find Full Text PDF

A core-shell magnetic metal-organic framework (FeO SiO/ PAEDTC@ MIL- 101 (Fe)) was synthesized as the substrate and then covered with a surface molecularly imprinted polymer (MIP) layer. Next, FeO SiO/ PAEDTC@ MIL- 101 (Fe) @ MIP was characterized by XRD, FT-IR, BET, VSM, TEM, and FE-SEM techniques and applied for selective, fast, and sensitive magnetic dispersive solid-phase microextraction (M-DµSPE) of diazinon from urine samples by the GC- FID detection method. The key experimental variables affecting M-DµSPE were studied and optimized by central composite design (CCD).

View Article and Find Full Text PDF

In this research, a novel, selective, and efficient porous adsorbent nano-composite comprising a molecularly imprinted polymer and a metal-organic framework (MIP@MOF) was employed for sampling, extraction and analysis of diazinon from the air by a needle trap device (NTD), for the first time. The synthesized MIP@MOF sorbent was characterized by the FT-IR, XRD, FE-SEM, TEM, and EDS techniques. Then, the effective parameters of the sampling (temperature and humidity) and desorption (time and temperature) process were optimized by response surface methodology (RSM).

View Article and Find Full Text PDF