Slope instability represents a substantial secondary hazard post-earthquake, leading to considerable socio-economic losses from the destruction of structures, infrastructure, and human lives. This study addresses the urgent need for precise evaluation of seismic slope stability, a subject that has gained significant attention in earthquake engineering over the past decade. A theoretical framework is proposed that utilizes an improved Sarma method, estimating seismic forces and safety factors based on limit equilibrium theory.
View Article and Find Full Text PDFOver the last decade, the notion of community resilience, which encompasses planning for, opposing, absorbing, and quickly recovering from disruptive occurrences, has gained momentum across the world. Critical Infrastructures (CI) are seen as critical to attaining success in today's densely populated countries. Such infrastructures must be robust in the face of multi-hazard catastrophes by implementing appropriate disaster management and recovery plans.
View Article and Find Full Text PDFThe evolution of shear key design for bridges is accompanied by research on structural earthquake resistance. However, the vast majority of pounding forces, responses, and corresponding data for the study and design of shear keys have been based on expensive experimentalism and imprecise empiricism approaches for decades. Hence, strengthening theoretical study on seismic performance of shear key is essential.
View Article and Find Full Text PDFSeismic resilience index (SRI) approach describes the post-seismic recovery phase of a single building by incorporating the time dimension. In recent decades, numerous quantitative frameworks have been developed to quantify earthquake resilience. The seismic resilience of existing reinforced concrete (RC) structures in Malaysia under far-field (FF) and near-field (NF) earthquake scenarios is examined in this research methodology using a seismic resilience index (SRI) and functionality curve.
View Article and Find Full Text PDFRoadway systems and their assets are the backbone of the transport sector and are vital for social and economic prosperity. Hence, it is important to design and develop transportation networks that can withstand natural hazards such as earthquakes. In recent decades, research concerning disaster risk management for roadway systems has received a lot of attention, particularly via the use of seismic vulnerability assessment methods.
View Article and Find Full Text PDFThis paper presents a simplified method in the seismic vulnerability assessment of reinforced concrete (RC) buildings based on proposed seismic vulnerability index (SVI) methodology. The employed procedure is derived with some modifications from the Italian GNDT and the European Macro-seismic approaches. Eight parameters were modeled in three distinct vulnerability classes to estimate the vulnerability indices of RC structures.
View Article and Find Full Text PDFThis paper provides data and information on Beirut Arab University׳s existing old building in Lebanon. The building was primarily designed to resist gravity loads only, with no attention to seismic or lateral load effects. The data shows that there is a need to improve the conditions of the existing old building by applying new features that function as seismic capacity resistance.
View Article and Find Full Text PDF