In yeasts and higher eukaryotes, chromatin motions may be tuned to genomic functions, with transcriptional activation and the DNA damage response both leading to profound changes in chromatin dynamics. The RAD51 recombinase is a key mediator of chromatin mobility following DNA damage. As functions of RAD51 beyond DNA repair are being discovered, we asked whether RAD51 modulates chromatin dynamics in the absence of DNA damage and found that inhibition or depletion of RAD51 alters chromatin motions in undamaged cells.
View Article and Find Full Text PDFThe emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin.
View Article and Find Full Text PDFParticle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images.
View Article and Find Full Text PDF