Publications by authors named "Fadi Towfic"

Article Synopsis
  • Immunochemotherapy is currently the primary treatment for newly diagnosed diffuse large B-cell lymphoma (ndDLBCL), but it's ineffective for some patients, prompting research into better prognostic methods.
  • By analyzing transcriptomic data from a large group of patients, researchers identified seven distinct clusters of ndDLBCL, with one specific cluster (A7) linked to poorer outcomes due to characteristics like low immune cell presence and high MYC expression.
  • The study also explores how certain drugs, like lenalidomide, may improve treatment for the high-risk A7 cluster by enhancing T-cell movement into tumors and the expression of key tumor markers, while identifying TCF4 as a crucial factor in MYC biology for this group.
View Article and Find Full Text PDF
Article Synopsis
  • Large-scale genomic analyses have been conducted for newly diagnosed multiple myeloma (ndMM), but not yet for relapsed/refractory multiple myeloma (rrMM), leading to a hypothesis about somatic variants tracking treatment response and myeloma evolution.
  • Whole-genome sequencing of 418 rrMM tumors from clinical trials was compared with 198 ndMM samples, revealing significant mutations and chromosomal changes such as TP53 inactivation and various copy number aberrations that are more prevalent in rrMM.
  • The study found that certain genomic alterations, like TP53 and DUOX2, increased as myeloma progressed to therapy-resistant stages, emphasizing the need for continued research to understand these changes and their implications for developing targeted
View Article and Find Full Text PDF

Although translocation events between chromosome 4 (NSD2 gene) and chromosome 14 (immunoglobulin heavy chain [IgH] locus) (t(4;14)) is considered high risk in newly diagnosed multiple myeloma (NDMM), only ∼30% to 40% of t(4;14) patients are clinically high risk. We generated and compared a large whole genome sequencing (WGS) and transcriptome (RNA sequencing) from 258 t(4;14) (n = 153 discovery, n = 105 replication) and 183 non-t(4;14) NDMM patients with associated clinical data. A landmark survival analysis indicated only ∼25% of t(4;14) patients had an overall survival (OS) <24 months, and a comparative analysis of the patient subgroups identified biomarkers associated with this poor outcome, including translocation breakpoints located in the NSD2 gene and expression of IgH-NSD2 fusion transcripts.

View Article and Find Full Text PDF

The acquisition of a multidrug refractory state is a major cause of mortality in myeloma. Myeloma drugs that target the cereblon (CRBN) protein include widely used immunomodulatory drugs (IMiDs), and newer CRBN E3 ligase modulator drugs (CELMoDs), in clinical trials. CRBN genetic disruption causes resistance and poor outcomes with IMiDs.

View Article and Find Full Text PDF

Purpose: Cereblon (CRBN), a substrate receptor of the E3 ubiquitin ligase complex CRL4CRBN, is the target of the small molecules lenalidomide and avadomide. Upon binding of the drugs, Aiolos and Ikaros are recruited to the E3 ligase, ubiquitylated, and subsequently degraded. In diffuse large B-cell lymphoma (DLBCL) cells, Aiolos and Ikaros are direct transcriptional repressors of interferon-stimulated genes (ISG) and degradation of these substrates results in increased ISG protein levels resulting in decreased proliferation and apoptosis.

View Article and Find Full Text PDF

Immunomodulatory drugs (IMiDs), including lenalidomide and pomalidomide, are used in the routine treatment for multiple myeloma (MM) patients. Cereblon (CRBN) is the direct molecular target of IMiDs. While CRBN is not an essential gene for MM cell proliferation, the frequency of CRBN genetic aberrations, including mutation, copy number loss, and exon-10 (which includes a portion of the IMiD-binding domain) splicing, have been reported to incrementally increase in later-line patients.

View Article and Find Full Text PDF

Background: Despite significant therapeutic advances in improving lives of multiple myeloma (MM) patients, it remains mostly incurable, with patients ultimately becoming refractory to therapies. MM is a genetically heterogeneous disease and therapeutic resistance is driven by a complex interplay of disease pathobiology and mechanisms of drug resistance. We applied a multi-omics strategy using tumor-derived gene expression, single nucleotide variant, copy number variant, and structural variant profiles to investigate molecular subgroups in 514 newly diagnosed MM (NDMM) samples and identified 12 molecularly defined MM subgroups (MDMS1-12) with distinct genomic and transcriptomic features.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of drug resistance poses a significant challenge for improving survival rates in myeloma patients.
  • A study analyzed genetic data from hundreds of patients and discovered that specific alterations in the CRBN protein increased with exposure to immunomodulatory drugs, impacting treatment outcomes.
  • This research provides the largest dataset on CRBN alterations in myeloma, which could aid in selecting patients for therapies targeting this protein.
View Article and Find Full Text PDF

While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of patients does not benefit from current therapeutics for unclear reasons. Many gene expression-based models of risk have been developed, but each model uses a different combination of genes and often involves assaying many genes making them difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced effort to develop models of rapid progression in newly diagnosed myeloma patients and to benchmark these against previously published models.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most common hematological cancer and is characterized by genetic features including translocations, chromosomal copy number aberrations, and mutations in key oncogene and tumor suppressor genes. Dysregulation of the tumor suppressor is important in the pathogenesis of many cancers, including MM. In newly-diagnosed MM patients, dysregulation occurs in three subsets: monoallelic deletion as part of deletion of chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and biallelic inactivation (~4%).

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, commonly described by cell-of-origin (COO) molecular subtypes. We sought to identify novel patient subgroups through an unsupervised analysis of a large public dataset of gene expression profiles from newly diagnosed de novo DLBCL patients, yielding 2 biologically distinct subgroups characterized by differences in the tumor microenvironment. Pathway analysis and immune deconvolution algorithms identified higher B-cell content and a strong proliferative signal in subgroup A and enriched T-cell, macrophage, and immune/inflammatory signals in subgroup B, reflecting similar biology to published DLBCL stratification research.

View Article and Find Full Text PDF

Deletions of chromosome 17p (del17p) that span the gene are associated with poor outcome in multiple myeloma (MM), but the prognostic value of del17p cancer clonal fraction (CCF) remains unclear. We applied uniform cytogenetic assessments in a large cohort of newly diagnosed MM (NDMM) patients carrying varying levels of del17p. Incremental CCF change was associated with shorter survival, and a robust CCF threshold of 0.

View Article and Find Full Text PDF

We analyzed gene expression levels of CRBN, cMYC, IRF4, BLIMP1, and XBP1 in 224 patients with multiple myeloma treated with pomalidomide and low-dose dexamethasone in the STRATUS study (ClinicalTrials.gov: NCT01712789; EudraCT number: 2012-001888-78). Clinical responses were observed at all CRBN expression levels.

View Article and Find Full Text PDF

Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges.

View Article and Find Full Text PDF

Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including , , , , and Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability.

View Article and Find Full Text PDF

Background: Copaxone is an efficacious and safe therapy that has demonstrated clinical benefit for over two decades in patients with relapsing forms of multiple sclerosis (MS). On an individual level, patients show variability in their response to Copaxone, with some achieving significantly higher response levels. The involvement of genes (e.

View Article and Find Full Text PDF

Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice.

View Article and Find Full Text PDF

Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine's potential mechanisms of action.

View Article and Find Full Text PDF

Glatiramer acetate (Copaxone®; GA) is a non-biological complex drug for multiple sclerosis. GA modulated thousands of genes in genome-wide expression studies conducted in THP-1 cells and mouse splenocytes. Comparing GA with differently-manufactured glatiramoid Polimunol (Synthon) in mice yielded hundreds of differentially expressed probesets, including biologically-relevant genes (e.

View Article and Find Full Text PDF

To generate new insights into the biology of Alzheimer's Disease (AD), we developed methods to combine and reuse a wide variety of existing data sets in new ways. We first identified genes consistently associated with AD in each of four separate expression studies, and confirmed this result using a fifth study. We next developed algorithms to search hundreds of thousands of Gene Expression Omnibus (GEO) data sets, identifying a link between an AD-associated gene (NEUROD6) and gender.

View Article and Find Full Text PDF
Article Synopsis
  • Glatiramer Acetate (GA) has been a safe and effective treatment for multiple sclerosis (MS) for 20 years, acting as an antigen, although its exact action mechanism is still unclear.
  • Genome-wide expression studies on the THP-1 cell line showed that GA increases anti-inflammatory markers and affects various immune pathways, but there are notable differences between branded GA and Probioglat, a potential generic version.
  • Important genes involved in inflammation were significantly activated by Probioglat compared to branded GA, suggesting that these two treatments have different biological effects and need further study.
View Article and Find Full Text PDF

For decades, policies regarding generic medicines have sought to provide patients with economical access to safe and effective drugs, while encouraging the development of new therapies. This balance is becoming more challenging for physicians and regulators as biologics and non-biological complex drugs (NBCDs) such as glatiramer acetate demonstrate remarkable efficacy, because generics for these medicines are more difficult to assess. We sought to develop computational methods that use transcriptional profiles to compare branded medicines to generics, robustly characterizing differences in biological impact.

View Article and Find Full Text PDF

Background & Aims: Genetic susceptibility loci for Crohn's disease (CD) are numerous, complex, and likely interact with undefined components of the environment. It has been a challenge to link the effects of particular loci to phenotypes of cells associated with pathogenesis of CD, such as Paneth cells. We investigated whether specific phenotypes of Paneth cells associated with particular genetic susceptibility loci can be used to define specific subtypes of CD.

View Article and Find Full Text PDF

Our ability to successfully intervene in disease processes is dependent on definitive diagnosis. In the case of autoimmune disease, this is particularly challenging because progression of disease is lengthy and multifactorial. Here we show the first chronological compendium of transcriptional and cellular signatures of diabetes in the non-obese diabetic mouse.

View Article and Find Full Text PDF