The chemistry of alkali-metal enolates is dominated by ion pairing. To improve our understanding of the intrinsic interactions between the alkali-metal cations and the enolate anions, we have applied Cooks' kinetic method to determine relative M (M=Li, Na, K) affinities of the stabilized enolates derived from acetylacetone, ethyl acetoacetate, diethyl malonate, ethyl cyanoacetate, 2-cyanoacetamide, and methyl malonate monoamide in the gas phase. Quantum chemical calculations support the experimental results and moreover afford insight into the structures of the alkali-metal enolate complexes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
The creation of biologically inspired artificial lipid bilayers on planar supports provides a unique platform to study membrane-confined processes in a well-controlled setting. At the plasma membrane of mammalian cells, the linkage of the filamentous (F)-actin network is of pivotal importance leading to cell-specific and dynamic F-actin architectures, which are essential for the cell's shape, mechanical resilience, and biological function. These networks are established through the coordinated action of diverse actin-binding proteins and the presence of the plasma membrane.
View Article and Find Full Text PDF