A simple configuration of only λ/9 thick 2D metallic grating embedded within an electro-optic (EO) material (lithium niobate for instance) is proposed and theoretically studied to act as an EO modulator. On the one hand, this grating is used as an interdigitated comb to apply a very high and spatially periodic modification of the electrostatic field. On the other hand, the grating is designed to exhibit a Fano-like resonance in the NIR spectral range.
View Article and Find Full Text PDFThe symmetry breaking in a typical dielectric GMR-grating structure allows the coupling of the incident wave with the so-called Symmetry-Protected Modes (SPM). In this present work, the excitation conditions of such particular modes are investigated. A parametric study including the grating dimensions is carried out to exploit them for a blood refractive index sensing with higher Sensitivity (S) and Figure Of Merit (FOM).
View Article and Find Full Text PDFOver the last few years, optical nanoantennas are continuously attracting interest owing to their ability to efficiently confine, localize resonance, and significantly enhanced electromagnetic fields at a subwavelength scale. However, such strong confinement can be further enhanced by using an appropriate combination of optical nanoantennas and Slanted Bound states in the continuum cavities. Here, we propose to synergistically bridge the plasmonic nanoantennas and high optical quality-factor cavities to numerically demonstrate six orders of magnitude local intensity enhancement without critical coupling conditions.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFIn this paper, we propose and numerically simulate a novel optical trapping process based on the enhancement and the confinement of both magnetic and electric near-fields by using gold Diabolo Antenna (DA). The later was recently proposed to generate huge magnetic near-field when illuminated by linearly polarized wave along its axis. Numerical 3D - FDTD simulation results demonstrate the high confinement of the electromagnetic field in the vicinity of the DA.
View Article and Find Full Text PDFIn this Letter, we report a Fano resonance-based highly sensitive and compact temperature sensor fabricated on thin film lithium niobate (TFLN) Suzuki phase lattice (SPL) photonic crystal. The experimental sensitivity is estimated to be 0.77 nm/°C with a photonic crystal size of only 25 μm × 24 μm.
View Article and Find Full Text PDFScanning Near-field Optical Microscopy (SNOM) has been successful in finely tuning the optical properties of photonic crystal (PC) nanocavities. The SNOM nanoprobes proposed so far allowed for either redshifting or blueshifting the resonance peak of the PC structures. In this paper, we theoretically demonstrate the possibility of a redshifting (up to +0.
View Article and Find Full Text PDFWe show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field.
View Article and Find Full Text PDFWe numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties.
View Article and Find Full Text PDFWe propose a new concept of fiber-integrated optical nano-tweezer on the basis of a single bowtie-aperture nano-antenna (BNA) fabricated at the apex of a metal-coated SNOM tip. We demonstrate 3D optical trapping of 0.5 micrometer latex beads with input power which does not exceed 1 mW.
View Article and Find Full Text PDFIn this paper, temperature variations are detected thanks to an enhanced nano-optical pyroelectric sensor. Sensing is obtained with the pyroelectric effect of lithium niobate (LN) in which, a suitable air-membrane photonic crystal cavity has been fabricated. The wavelength position of the cavity mode is tuned 11.
View Article and Find Full Text PDFThe control and localization of light at sub-wavelength scale are theoretically demonstrated with a very simple sub-wavelength dimension structure. This is demonstrated through a peculiar structure that can support localized modes which are not linked to any plasmon resonance. It is based on the acronym "FEMTO" that is designed using 26 sub-wavelength rectangular apertures engraved into perfectly conducting metal screen.
View Article and Find Full Text PDFWe demonstrate what we believe to be the first experimental extraordinary optical transmission (EOT) of up to 90%, thanks to a well-identified guided mode that propagates through annular apertures engraved into an optically thick silver layer. In spite of the metal losses, high transmission can be obtained by adjusting the geometrical parameters of the fabricated structure, as was already theoretically demonstrated. To our knowledge, this is the first study showing such a large transmission in the visible range.
View Article and Find Full Text PDFWe suggest and numerically demonstrate a design for Frequency Selective Surfaces (FSS) operating in the optical (visible and near-infrared) range. The position and width of the FSS bandpass do not depend on the angle of incidence and polarization state of the incoming light, allowing high transmission at any angle. The FSS is formed by annular apertures perforated in a metal film and arranged in a square array.
View Article and Find Full Text PDFThe diffraction of light that emerges from a metallic circular aperture is studied. Near- and far-field results are presented. Spectral angular transmitted intensities are performed versus the incident wavelength for four kinds of aperture.
View Article and Find Full Text PDF