Publications by authors named "Fadi El-Ghussein"

Purpose: The purpose of this study was to determine the diagnostically most important molecular biomarkers quantified by magnetic resonance-guided (MR) near-infrared spectral tomography (NIRST) that distinguish malignant breast lesions from benign abnormalities when combined with outcomes from clinical breast MRI.

Experimental Design: The study was HIPAA compliant and approved by the Dartmouth Institutional Review Board, the NIH, the United States State Department, and Xijing Hospital. MR-guided NIRST evaluated hemoglobin, water, and lipid content in regions of interest defined by concurrent dynamic contrast-enhanced MRI (DCE-MRI) in the breast.

View Article and Find Full Text PDF

In this study, data from breast MRI-guided near infrared spectroscopy (NIRS) exams delivered to 44 patients scheduled for surgical resection (ending in 16 benign and 28 malignant diagnoses) were analyzed using a spatial sensitivity metric to quantify the adequacy of the optical measurements for interrogating the tumor region of interest, as derived from the concurrent MRI scan. Along with positional sensitivity, the incorporation of spectral priors and the selection of an appropriate regularization parameter in the image reconstruction were considered, and found to influence the diagnostic accuracy of the recovered images. Once optimized, the MRI/NIRS data was able to differentiate the malignant from benign lesions through both total hemoglobin (p = 0.

View Article and Find Full Text PDF

Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance.

View Article and Find Full Text PDF

Rationale And Objectives: Near-infrared spectroscopy (NIRS) of breast can provide functional information on the vascular and structural compartments of tissues in regions identified during simultaneous magnetic resonance imaging (MRI). NIRS can be acquired during dynamic contrast-enhanced MRI (DCE-MRI) to accomplish image-guided spectroscopy of the enhancing regions, potentially increasing the diagnostic specificity of the examination and reducing the number of biopsies performed as a result of inconclusive MRI breast imaging studies.

Materials And Methods: We combine synergistic attributes of concurrent DCE-MRI and NIRS with a new design of the clinical NIRS breast interface that couples to a standard MR breast coil and allows imaging of variable breast sizes.

View Article and Find Full Text PDF

A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min.

View Article and Find Full Text PDF

Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding.

View Article and Find Full Text PDF

Small animal fluorescence molecular imaging (FMI) can be a powerful tool for preclinical drug discovery and development studies. However, light absorption by tissue chromophores (e.g.

View Article and Find Full Text PDF

In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described.

View Article and Find Full Text PDF

We used single-photon counting (SPC) detection for diffuse fluorescence tomography to image nanomolar (nM) concentrations of reporter dyes through a rat. Detailed phantom data are presented to show that every centimeter increase in tissue thickness leads to 1 order of magnitude decrease in the minimum fluorophore concentration detectable for a given detector sensitivity. Specifically, here, detection of Alexa Fluor 647 dyes is shown to be achievable for concentrations as low as 1 nM (<200 fM) through more than 5 cm in tissue phantoms, which indicates that this is feasible in larger rodent models.

View Article and Find Full Text PDF