The global retreat of glaciers is dramatically altering mountain and high-latitude landscapes, with new ecosystems developing from apparently barren substrates. The study of these emerging ecosystems is critical to understanding how climate change interacts with microhabitat and biotic communities and determines the future of ice-free terrains. Here, using a comprehensive characterization of ecosystems (soil properties, microclimate, productivity and biodiversity by environmental DNA metabarcoding) across 46 proglacial landscapes worldwide, we found that all the environmental properties change with time since glaciers retreated, and that temperature modulates the accumulation of soil nutrients.
View Article and Find Full Text PDFThe development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types.
View Article and Find Full Text PDFThe worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking.
View Article and Find Full Text PDFThe mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (β-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys.
View Article and Find Full Text PDFLandscapes nearby glaciers are disproportionally affected by climate change, but we lack detailed information on microclimate variations that can modulate the impacts of global warming on proglacial ecosystems and their biodiversity. Here, we use near-subsurface soil temperatures in 175 stations from polar, equatorial and alpine glacier forelands to generate high-resolution temperature reconstructions, assess spatial variability in microclimate change from 2001 to 2020, and estimate whether microclimate heterogeneity might buffer the severity of warming trends. Temporal changes in microclimate are tightly linked to broad-scale conditions, but the rate of local warming shows great spatial heterogeneity, with faster warming nearby glaciers and during the warm season, and an extension of the snow-free season.
View Article and Find Full Text PDFIce-free areas are expanding worldwide due to dramatic glacier shrinkage and are undergoing rapid colonization by multiple lifeforms, thus representing key environments to study ecosystem development. It has been proposed that the colonization dynamics of deglaciated terrains is different between surface and deep soils but that the heterogeneity between communities inhabiting surface and deep soils decreases through time. Nevertheless, tests of this hypothesis remain scarce, and it is unclear whether patterns are consistent among different taxonomic groups.
View Article and Find Full Text PDFObjective: To estimate the predictive role of faecal haemoglobin (f-Hb) concentration among subjects with faecal immunochemical test (FIT) results below the positivity cut-off for the subsequent risk of advanced neoplasia (AN: colorectal cancer-CRC-or advanced adenoma).
Design: Prospective cohort of subjects aged 50-69 years, undergoing their first FIT between 1 January 2004 and 31 December 2010 in four population-based programmes in Italy.
Methods: All programmes adopted the same analytical procedure (OC Sensor, Eiken Japan), performed every 2 years, on a single sample, with the same positivity cut-off (20 µg Hb/g faeces).
Minerva Gastroenterol Dietol
June 2020
Introduction: Screening programs for colorectal cancer (CRC) are mainly based on a first-line fecal immunochemical test for hemoglobin (FIT). Fecal M2-type pyruvate kinase (M2-PK) has been evaluated in clinical settings showing promising results for early CRC detection. However, the impact of fecal M2-PK assessment on the performance of first-round CRC screening programs is not known.
View Article and Find Full Text PDF