In animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two-dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course.
View Article and Find Full Text PDFThe processing of visual information for collision avoidance has been investigated at the biophysical level in several model systems. In grasshoppers, the (so-called) [Formula: see text] model captures reasonably well the visual processing performed by an identified neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision avoidance in other animals.
View Article and Find Full Text PDFNeurons receive information through their synaptic inputs, but the functional significance of how those inputs are mapped on to a cell's dendrites remains unclear. We studied this question in a grasshopper visual neuron that tracks approaching objects and triggers escape behavior before an impending collision. In response to black approaching objects, the neuron receives OFF excitatory inputs that form a retinotopic map of the visual field onto compartmentalized, distal dendrites.
View Article and Find Full Text PDFCurr Opin Insect Sci
December 2021
The development of genetically encoded tools to record and manipulate neurons in vivo has greatly increased our understanding of how neuronal activity affects behavior. Recent advances enable the use of these tools in species not typically considered genetically tractable. This progress is revolutionizing neuroscience in general, and insect neuroethology in particular.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
March 2020
Voltage-gated sodium (NaV) channels, encoded by the gene para, play a critical role in the rapid processing and propagation of visual information related to collision avoidance behaviors. We investigated their localization by immunostaining the optic lobes and central brain of the grasshopper Schistocerca americana and the vinegar fly Drosophila melanogaster with an antibody that recognizes the channel peptide domain responsible for fast inactivation gating. NaV channels were detected at high density at all stages of development.
View Article and Find Full Text PDFHow neurons filter and integrate their complex patterns of synaptic inputs is central to their role in neural information processing. Synaptic filtering and integration are shaped by the frequency-dependent neuronal membrane impedance. Using single and dual dendritic recordings in vivo, pharmacology, and computational modeling, we characterized the membrane impedance of a collision detection neuron in the grasshopper .
View Article and Find Full Text PDFThe locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe.
View Article and Find Full Text PDFAll animals must detect impending collisions to escape and reliably discriminate them from nonthreatening stimuli, thus preventing false alarms. Therefore, it is no surprise that animals have evolved highly selective and sensitive neurons dedicated to such tasks. We examined a well-studied collision-detection neuron in the grasshopper ( Schistocerca americana) using in vivo electrophysiology, pharmacology, and computational modeling.
View Article and Find Full Text PDFVisual neurons that track objects on a collision course are often finely tuned to their target stimuli because this is critical for survival. The presynaptic neural networks converging on these neurons and their role in tuning them remain poorly understood. We took advantage of well-known characteristics of one such neuron in the grasshopper visual system to investigate the properties of its presynaptic input network.
View Article and Find Full Text PDFFeedforward inhibition is ubiquitous as a motif in the organization of neuronal circuits. During sensory information processing, it is traditionally thought to sharpen the responses and temporal tuning of feedforward excitation onto principal neurons. As it often exhibits complex time-varying activation properties, feedforward inhibition could also convey information used by single neurons to implement dendritic computations on sensory stimulus variables.
View Article and Find Full Text PDFCollision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels.
View Article and Find Full Text PDFVisually-guided escape behaviors are critical for survival. New research reveals how neurons selectively coding for local motion directions can be assembled into collision detecting ones using a simple recipe.
View Article and Find Full Text PDFHow neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e.
View Article and Find Full Text PDFIndividual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree.
View Article and Find Full Text PDFCombining a variety of large-scale, data-intensive techniques, a recent study has unraveled the neural pathways involved in Drosophila larval escape from a parasitoid wasp invasion.
View Article and Find Full Text PDFCoupling between sensory neurons impacts their tuning properties and correlations in their responses. How such coupling affects sensory representations and ultimately behavior remains unclear. We investigated the role of neuronal coupling during visual processing using a realistic biophysical model of the vertical system (VS) cell network in the blow fly.
View Article and Find Full Text PDFNeurons in a variety of species, both vertebrate and invertebrate, encode the kinematics of objects approaching on a collision course through a time-varying firing rate profile that initially increases, then peaks, and eventually decays as collision becomes imminent. In this temporal profile, the peak firing rate signals when the approaching object's subtended size reaches an angular threshold, an event which has been related to the timing of escape behaviors. In a locust neuron called the lobula giant motion detector (LGMD), the biophysical basis of this angular threshold computation relies on a multiplicative combination of the object's angular size and speed, achieved through a logarithmic-exponential transform.
View Article and Find Full Text PDFA new study uses a combination of physiological and optogenetic techniques to identify visual neurons in fruit flies that detect approaching objects, and whose activation is integral in escaping an oncoming threat.
View Article and Find Full Text PDFJ Neurophysiol
February 2012
Noise is a major concern in circuits processing electrical signals, including neural circuits. There are many factors that influence how noise propagates through neural circuits, and there are few systems in which noise levels have been studied throughout a processing pathway. We recorded intracellularly from multiple stages of a sensory-motor pathway in the locust that detects approaching objects.
View Article and Find Full Text PDFTwo articles in this issue of Neuron (Eichner et al. and Clark et al.) attack the problem of explaining how neuronal hardware in Drosophila implements the Reichardt motion detector, one of the most famous computational models in neuroscience, which has proven intractable up to now.
View Article and Find Full Text PDFVisually guided collision avoidance is critical for the survival of many animals. The execution of successful collision-avoidance behaviors requires accurate processing of approaching threats by the visual system and signaling of threat characteristics to motor circuits to execute appropriate motor programs in a timely manner. Consequently, visually guided collision avoidance offers an excellent model with which to study the neural mechanisms of sensory-motor integration in the context of a natural behavior.
View Article and Find Full Text PDFLocusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Cocontraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold.
View Article and Find Full Text PDFHow higher-order sensory neurons generate complex selectivity from their simpler inputs is a fundamental question in neuroscience. The lobula giant movement detector (LGMD) is such a visual neuron in the locust Schistocerca americana that responds selectively to objects approaching on a collision course or their two-dimensional projections, looming stimuli [1-4]. To study how this selectivity arises, we designed an apparatus allowing us to stimulate, individually and independently, a sizable fraction of the ∼15,000 elementary visual inputs impinging retinotopically onto the LGMD's dendritic fan [5-7] (Figure 1Ai).
View Article and Find Full Text PDFDesert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function.
View Article and Find Full Text PDFThe Lobula Giant Movement Detector (LGMD) is a higher-order visual interneuron of Orthopteran insects that responds preferentially to objects approaching on a collision course. It receives excitatory input from an entire visual hemifield that anatomical evidence suggests is retinotopic. We show that this excitatory projection activates calcium-permeable nicotinic acetylcholine receptors.
View Article and Find Full Text PDF