High-power short-duration (HPSD) radiofrequency (RF) ablation has been adopted to improve atrial fibrillation (AF) ablation. Although the role of HPSD is well-established in pulmonary vein isolation (PVI), fewer data have assessed the impact of HPSD when addressing extra-pulmonary veins (PVs) targets. Therefore, this study aims to determine the safety, effectiveness, and acute outcomes of HPSD lesion index (LSI)-guided posterior wall isolation (PWI) in addition to PVI as an initial strategy in persistent atrial fibrillation (Pe-AF).
View Article and Find Full Text PDFBackground: Durable pulmonary vein isolation (PVI) is recommended for symptomatic paroxysmal atrial fibrillation (AF) treatment, but it has been demonstrated that it may not be enough to treat persistent AF (Pe-AF). Therefore, posterior wall isolation (PWI) is among the strategies adopted on top of PVI to treat Pe-AF patients. However, PWI using contiguous and optimized radiofrequency lesions remains challenging, and few studies have evaluated the impact of the Ablation Index (AI) on the efficacy of PWI.
View Article and Find Full Text PDFBackground: Several electrocardiogram (ECG) criteria have been proposed to predict the location of the culprit occlusion in specific subsets of patients presenting with ST-segment elevation myocardial infarction (STEMI). The aim of this study was to develop, through an independent validation of currently available criteria, a comprehensive and easy-to-use ECG algorithm, and to test its diagnostic performance in real-world clinical practice.
Methods: We analyzed ECG and angiographic data from 419 consecutive STEMI patients submitted to primary percutaneous coronary intervention over a one-year period, dividing the overall population into derivation (314 patients) and validation (105 patients) cohorts.