A hyperbolic medium will transfer super-resolved optical waveforms with no distortion, support negative refraction, superlensing, and harbor nontrivial topological photonic phases. Evidence of hyperbolic effects is found in periodic and resonant systems for weakly diffracting beams, in metasurfaces, and even naturally in layered systems. At present, an actual hyperbolic propagation requires the use of metamaterials, a solution that is accompanied by constraints on wavelength, geometry, and considerable losses.
View Article and Find Full Text PDFWe observe chaotic optical wave dynamics characterized by erratic energy transfer and soliton annihilation and creation in the aftermath of a three-soliton collision in a photorefractive crystal. Irregular dynamics are found to be mediated by the nonlinear Raman effect, a coherent interaction that leads to nonreciprocal soliton energy exchange. Results extend the analogy between solitons and particles to the emergence of chaos in three-body physics and provide new insight into the origin of the irregular dynamics that accompany extreme and rogue waves.
View Article and Find Full Text PDFWe perform percolation analysis of crossed-polarizer transmission images in a biased nanodisordered bulk KTN:Li perovskite. Two distinct percolative transitions are identified at two electric field thresholds. The low-field transition involves a directional fractal chain of dimension D=1.
View Article and Find Full Text PDFWe demonstrate experimentally in biased photorefractive crystals that collisions between random-amplitude optical spatial solitons produce long-tailed statistics from input Gaussian fluctuations. The effect is mediated by Raman nonlocal corrections to Kerr self-focusing that turn soliton-soliton interaction into a Maxwell demon for the output wave amplitude.
View Article and Find Full Text PDFA landmark of statistical mechanics, spin-glass theory describes critical phenomena in disordered systems that range from condensed matter to biophysics and social dynamics. The most fascinating concept is the breaking of replica symmetry: identical copies of the randomly interacting system that manifest completely different dynamics. Replica symmetry breaking has been predicted in nonlinear wave propagation, including Bose-Einstein condensates and optics, but it has never been observed.
View Article and Find Full Text PDF