Publications by authors named "Fabrizio Ciancetta"

Classification systems based on machine learning (ML) models, critical in predictive maintenance and fault diagnosis, are subject to an error rate that can pose significant risks, such as unnecessary downtime due to false alarms. Propagating the uncertainty of input data through the model can define confidence bands to determine whether an input is classifiable, preferring to indicate a result of unclassifiability rather than misclassification. This study presents an electrical fault diagnosis system on asynchronous motors using an artificial neural network (ANN) model trained with vibration measurements.

View Article and Find Full Text PDF

In traditional nonintrusive load monitoring (NILM) systems, the measurement device is installed upstream of an electrical system to acquire the total aggregate absorbed power and derive the powers absorbed by the individual electrical loads. Knowing the energy consumption related to each load makes the user aware and capable of identifying malfunctioning or less-efficient loads in order to reduce consumption through appropriate corrective actions. To meet the feedback needs of modern home, energy, and assisted environment management systems, the nonintrusive monitoring of the power status (ON or OFF) of a load is often required, regardless of the information associated with its consumption.

View Article and Find Full Text PDF

Asynchronous motors represent a large percentage of motors used in the electrical industry. Suitable predictive maintenance techniques are strongly required when these motors are critical in their operations. Continuous non-invasive monitoring techniques can be investigated to avoid the disconnection of the motors under test and service interruption.

View Article and Find Full Text PDF

Three-phase induction motors are widely diffused in the industrial environment. Many times, the rated power of three-phase induction motors is not properly chosen causing incorrect operating conditions from an energetic point of view. Monitoring the mechanical dimension of a new motor is helpful, should an existing motor need to be replaced.

View Article and Find Full Text PDF