Polymer-modified bitumens are usually employed for enhancing the mixture performance against typical pavement distresses. This paper presents an experimental investigation of bitumens added with two plastomeric compounds, containing recycled plastics and graphene, typically used for asphalt concrete dry modification. The goal was to study the effects of the compounds on the rheological response of the binder phase, as well the adhesion properties, in comparison with a reference plain bitumen.
View Article and Find Full Text PDFMaterials (Basel)
February 2021
Nowadays, the growing energy costs and pressing worldwide demand for petroleum-based products create a strong need to develop alternative binders deriving from green and renewable sources. Bio-binders (or bitumen added to bio-based materials) can potentially be a viable alternative for the production of bituminous mixture, promoting the circular economy as well as environmental sustainability principles without reducing the overall performance of the mixture. In this context, the current study focuses on evaluation of the effects of a bio-binder on the mechanical response of asphalt concrete (AC) produced with it.
View Article and Find Full Text PDFThe analysis of fatigue behavior of bituminous binders is a complex issue due to several time-temperature dependent phenomena which interact simultaneously, such as damage accumulation, viscoelasticity, thixotropy, and healing. The present research involves rheological measurements aimed at evaluating the fatigue behavior and compares the self-healing capability of two plain bitumen and a bio-binder obtained by partially replacing one of the plain bitumen with a renewable bio-oil. Healing potential was assessed by means of an experimental approach previously implemented for modified bitumen and bituminous mastic and based on the use of a dynamic shear rheometer (DSR).
View Article and Find Full Text PDF