This work investigates a new nanostructured gas diffusion layer (nano-GDL) to improve the performance of air cathode single-chamber microbial fuel cells (a-SCMFCs). The new nano-GDLs improve the direct oxygen reduction reaction by exploiting the best qualities of nanofibers from electrospinning in terms of high surface-area-to-volume ratio, high porosity, and laser-based processing to promote adhesion. By electrospinning, nano-GDLs were fabricated directly by collecting two nanofiber mats on the same carbon-based electrode, acting as the substrate.
View Article and Find Full Text PDFMemristive devices that rely on redox-based resistive switching mechanism have attracted great attention for the development of next-generation memory and computing architectures. However, a detailed understanding of the relationship between involved materials, interfaces, and device functionalities still represents a challenge. In this work, we analyse the effect of electrode metals on resistive switching functionalities of NbO-based memristive cells.
View Article and Find Full Text PDFMemristive devices based on the resistive switching mechanism are continuously attracting attention in the framework of neuromorphic computing and next-generation memory devices. Here, we report on a comprehensive analysis of the resistive switching properties of amorphous NbO grown by anodic oxidation. Besides a detailed chemical, structural and morphological analysis of the involved materials and interfaces, the mechanism of switching in Nb/NbO/Au resistive switching cells is discussed by investigating the role of metal-metal oxide interfaces in regulating electronic and ionic transport mechanisms.
View Article and Find Full Text PDF