Stars form in galaxies, from gas that has been accreted from the intergalactic medium. Simulations have shown that recycling of gas-the reaccretion of gas that was previously ejected from a galaxy-could sustain star formation in the early Universe. We observe the gas surrounding a massive galaxy at redshift 2.
View Article and Find Full Text PDFAll galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula.
View Article and Find Full Text PDFSimulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.
View Article and Find Full Text PDF