The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit.
View Article and Find Full Text PDFSporadic amyotrophic lateral sclerosis (SALS) is a motor neuron degenerative disease of unknown etiology. Current thinking on SALS is that multiple genetic and environmental factors contribute to disease liability. Since neuronal acetylcholine receptors (nAChRs) are part of the glutamatergic pathway, we searched for sequence variants in CHRNA3, CHRNA4 and CHRNB4 genes, encoding neuronal nicotinic AChR subunits, in 245 SALS patients and in 450 controls.
View Article and Find Full Text PDFWe have previously found that repeated exposure to heroin reduces liver synthesis of morphine-3-glucuronide (M3G) and increases the production of morphine-6-glucuronide (M6G), which normally is not formed in the rat. By contrast repeated exposure to naltrexone does not activate M6G synthesis but increases the V(max) of M3G formation. M3G synthesis depends on the activity of two isoforms of the UDP-glucuronosyltransferase (UGT), UGT1A1 and UGT2B1.
View Article and Find Full Text PDFThe chemokine interleukin 8/CXCL8 induces the phosphorylation of the GluR1 subunit of the AMPA-type glutamate receptor in neurons and transfected HEK cells, on both serine 845 (S845) and 831 (S831) residues. We previously described that CXCL8 receptor CXCR2 and GluR1 co-precipitate and that GluR1/CXCR2 co-expression both in HEK cells and neurons impairs CXCL8-induced cell migration. Here we show that replacement of S845 with Ala (A), but not with Glu (E), strongly reduces GluR1/CXCR2 interaction and abolishes the impairment of CXCL8-induced cell migration.
View Article and Find Full Text PDFThe chemokine fractalkine (CX(3)CL1) is constitutively expressed by central neurons, regulating microglial responses including chemotaxis, activation, and toxicity. Through the activation of its own specific receptor, CX(3)CR1, CX(3)CL1 exerts both neuroprotection against glutamate (Glu) toxicity and neuromodulation of the glutamatergic synaptic transmission in hippocampal neurons. Using cultured hippocampal neuronal cell preparations, obtained from CX(3)CR1(-/-) (CX(3)CR1(GFP/GFP)) mice, we report that these same effects are mimicked by exposing neurons to a medium conditioned with CX(3)CL1-treated mouse microglial cell line BV2 (BV2-st medium).
View Article and Find Full Text PDF