Publications by authors named "Fabrizia Marullo"

H3K9 methylation maintains cell identity orchestrating stable silencing and anchoring of alternate fate genes within the heterochromatic compartment underneath the nuclear lamina (NL). However, how cell type-specific genomic regions are specifically targeted to the NL is still elusive. Using fibro-adipogenic progenitors (FAPs) as a model, we identified Prdm16 as a nuclear envelope protein that anchors H3K9-methylated chromatin in a cell-specific manner.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome is a genetic disease caused by an aberrant form of Lamin A resulting in chromatin structure disruption, in particular by interfering with lamina associated domains. Early molecular alterations involved in chromatin remodeling have not been identified thus far. Here, we present SAMMY-seq, a high-throughput sequencing-based method for genome-wide characterization of heterochromatin dynamics.

View Article and Find Full Text PDF

Epigenetic mechanisms modulate and maintain the transcriptional state of the genome acting at various levels on chromatin. Emerging findings suggest that the position in the nuclear space and the cross talk between components of the nuclear architecture play a role in the regulation of epigenetic signatures. We recently described a cross talk between the Polycomb group of proteins (PcG) epigenetic repressors and the nuclear lamina.

View Article and Find Full Text PDF

Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors--and how this cross talk influences physiological processes--is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci.

View Article and Find Full Text PDF

Upon exposure to genotoxic stress, skeletal muscle progenitors coordinate DNA repair and the activation of the differentiation program through the DNA damage-activated differentiation checkpoint, which holds the transcription of differentiation genes while the DNA is repaired. A conceptual hurdle intrinsic to this process relates to the coordination of DNA repair and muscle-specific gene transcription within specific cell cycle boundaries (cell cycle checkpoints) activated by different types of genotoxins. Here, we show that, in proliferating myoblasts, the inhibition of muscle gene transcription occurs by either a G 1- or G 2-specific differentiation checkpoint.

View Article and Find Full Text PDF

Despite having distinct expression patterns and phenotypes in mutant mice, the myogenic regulatory factors Myf5 and MyoD have been considered to be functionally equivalent. Here, we report that these factors have a different response to DNA damage, due to the presence in MyoD and absence in Myf5 of a consensus site for Abl-mediated tyrosine phosphorylation that inhibits MyoD activity in response to DNA damage. Genotoxins failed to repress skeletal myogenesis in MyoD-null embryos; reintroduction of wild-type MyoD, but not mutant Abl phosphorylation-resistant MyoD, restored the DNA-damage-dependent inhibition of muscle differentiation.

View Article and Find Full Text PDF

The phosphodiesterase type IV inhibitor rolipram increases cAMP response element-binding protein (CREB) phosphorylation and exerts neuroprotective effects in both the quinolinic acid rat model of Huntington's disease (DeMarch et al., 2007) and the R6/2 mouse including sparing of striatal neurons, prevention of neuronal intranuclear inclusion formation and attenuation of microglial reaction (DeMarch et al., 2008).

View Article and Find Full Text PDF

Decreased activity of cAMP responsive element-binding protein (CREB) is thought to contribute to the death of striatal medium spiny neurons in Huntington's disease (HD). Therefore, therapies that increase levels of activated CREB, may be effective in fighting neurodegeneration in HD. In this study, we sought to determine whether the phosphodiesterase type 10 (PDE10A) inhibitor TP10 exerts a neuroprotective effect in an excitotoxic model of HD.

View Article and Find Full Text PDF