Publications by authors named "Fabricio Rodrigues"

Article Synopsis
  • Soybean crops are significantly affected by rust epidemics caused by a specific pathogen, leading to yield losses and increased fungicide usage.
  • A study tested a phosphite solution of nickel and potassium as an induced resistance (IR) treatment, finding that it dramatically reduced the germination of rust spores and disease severity in infected soybean plants.
  • The IR treatment not only enhanced nutrient levels like potassium and nickel but also preserved the plants' photosynthetic health and boosted the expression of defense-related genes, suggesting a robust biochemical response to fungal infections.
View Article and Find Full Text PDF

Studies on physiological responses to stimuli from physical factors are essential for understanding the dynamics of the microorganisms and higly important for the management of plant diseases. Besides, the development of an epidemiological model for pathogen populations requires studying their physiological responses to physical stimuli. The objective of this study was to evaluate the germination dynamics of spores from six isolates of Bipolaris bicolor under effects of light at 25 °C.

View Article and Find Full Text PDF

Maydis leaf blight (MLB), caused by the necrotrophic fungus , has caused considerable yield losses in maize production. The hypothesis that maize plants with higher foliar silicon (Si) concentration can be more resistant against MLB was investigated in this study. This goal was achieved through an in-depth analysis of the photosynthetic apparatus (parameters of leaf gas exchange chlorophyll (Chl) fluorescence and photosynthetic pigments) changes in activities of defense and antioxidative enzymes in leaves of maize plants with (+Si; 2 mM) and without (-Si; 0 mM) Si supplied, as well as challenged and not with .

View Article and Find Full Text PDF

Objective: To investigate whether having a higher number of depressive symptoms is associated with negative self-rated health (SRH) even in the absence of illness.

Methods: This is a secondary analysis of baseline data from the Brazilian Longitudinal Study of Aging (ELSI-Brazil), conducted in 2015-2016, using a national sample of 9,412 people aged 50 or over. SRH was dichotomized into poor or very poor and very good or excellent, good, or average.

View Article and Find Full Text PDF

Objectives: There has been growing concern about the long-term effects of coronavirus disease 2019 (COVID-19) on mental health. The biological factors common to psychiatric conditions and COVID-19 are not yet fully understood.

Methodos: We narratively reviewed prospective longitudinal studies that measured metabolic or inflammatory markers and assessed psychiatric sequelae and cognitive impairment in individuals with COVID-19 at least 3 months after infection.

View Article and Find Full Text PDF

, a fungus associated with pustules of the coffee leaf rust (CLR, ) in Brazil, was tested and to assess its biocontrol potential. The fungus inhibited the germination of rust spores by over 80%. CLR severity was reduced by 93% when was applied to coffee leaf discs inoculated with , whilst a reduction of 70-90% was obtained for experiments.

View Article and Find Full Text PDF

Numerous reviews and hundreds of refereed articles have been published on silicon's effects on abiotic and biotic stress as well as overall plant growth and development. The science for silicon is well-documented and comprehensive. However, even with this robust body of information, silicon is still not routinely used for alleviating plant stress and promoting plant growth and development.

View Article and Find Full Text PDF

Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P.

View Article and Find Full Text PDF

The infection of wheat leaves by Pyricularia oryzae induced remarkable reprogramming of the primary metabolism (amino acids, sugars, and organic acids) in favor of a successful fungal infection and certain changes were conserved among cultivars regardless of their level of resistance to blast. Wheat blast, caused by Pyricularia oryzae, has become one of the major threats for food security worldwide. Here, we investigated the behavior of three wheat cultivars (BR-18, Embrapa-16, and BRS-Guamirim), differing in their level of resistance to blast, by analyzing changes in cellular damage, antioxidative metabolism, and defense compounds as well as their photosynthetic performance and metabolite profile.

View Article and Find Full Text PDF

Fusarium stalk rot (FSR), caused by Fusarium verticillioides, is one of the most destructive diseases impacting maize yield worldwide. In this study, net carbon assimilation rate (A), stomatal conductance to water vapor (g), transpiration rate (E), and internal CO concentration (C) were evaluated on leaves and the activities of enzymes (chitinase (CHI), β-1-3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), polyphenoloxidase (PPO), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX)) as well the concentrations of total soluble phenolics (TSP), lignin-thioglycolic acid (LTGA) derivatives, and malondialdehyde (MDA) were evaluated in the internodes and nodes of plants from maize hybrids moderately resistant (BRS 1035) and susceptible (30F35Y) to FSR. The upward relative lesion length (URLL) and radial fungal colonization (RFC) were 46 and 29% lower for the BRS 1035 hybrid in comparison to 30F35Y hybrid, respectively, at 30 after inoculation (dai).

View Article and Find Full Text PDF

Considering the importance of blast caused by Pyricularia oryzae in the decrease of rice yield worldwide, this study aimed to assess the photosynthetic performance [leaf gas exchange and chlorophyll (Chl) a fluorescence parameters as well as the photosynthetic pigments concentration], the activities of antioxidant enzymes [ascorbate peroxidase, catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase] and concentrations of hydrogen peroxide (H O ) and malondialdehyde (MDA) in the leaves of rice plants non-supplied (-Glu) or supplied (+Glu) with glutamate (Glu) and non-infected or infected by P. oryzae. Blast severity was reduced in the leaves of +Glu plants.

View Article and Find Full Text PDF

Massive occurrence of trichodinids is frequently accompanied by serious disease in fish farms. In this study, trichodinid species from the gills and skin of Nile tilapia (Oreochromis niloticus) farmed in the central-western region of Brazil (state of Goiás) were morphologically characterized. Dried slides were prepared from the parasites and were impregnated with silver nitrate (2%).

View Article and Find Full Text PDF

Blast, caused by , has become a devastating disease on wheat in several countries worldwide. Growers need alternative methods for blast management, and silicon (Si) stands out for its potential to decrease the intensity of important diseases in several crops. This study investigated the effect of Si on improving photoassimilate production on flag leaves of wheat plants and their partitioning to spikes in a scenario where blast symptoms decreased as a result of potentiation of defense mechanisms by Si.

View Article and Find Full Text PDF

Fungal pathogens produce toxins that are important for their pathogenesis and/or aggressiveness towards their hosts. Picolinic acid (PA), a non-host selective toxin, causes lesions on rice leaves resembling those originated from Pyricularia oryzae infection. Considering that non-host selective toxins can be useful for plant diseases control, this study investigated whether the foliar spray with PA on wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Wheat blast was first reported in Brazil in 1985. It spread rapidly across the wheat cropping areas of Brazil to become the most important biotic constraint on wheat production in the region. The alarming appearance of wheat blast in Bangladesh in 2016 greatly increased the urgency to understand this disease, including its causes and consequences.

View Article and Find Full Text PDF

Background: The response to infection of Austropuccinia psidii in resistant (CLR-383) and susceptible (CLR-384) Eucalyptus grandis clones, exposed to herbicide drift of carfentrazone-ethyl, glyphosate and a mixture of these two herbicides, was evaluated at microscopic and physiological levels.

Results: Plants of the two clones showed symptoms of phytotoxicity caused by herbicide drift. However, net CO assimilation rate, height and shoot dry matter were lower in CLR-384 than in CLR-383.

View Article and Find Full Text PDF

The devastating wheat blast disease first emerged in Brazil in 1985. The disease was restricted to South America until 2016, when a series of grain imports from Brazil led to a wheat blast outbreak in Bangladesh. Wheat blast is caused by Pyricularia graminis-tritici ( Pygt), a species genetically distinct from the Pyricularia oryzae species that causes rice blast.

View Article and Find Full Text PDF

Considering the potential of anthracnose to decrease soybean yield and the need to gain more information regarding its effect on soybean physiology, the present study performed an in-depth analysis of the photosynthetic performance of soybean leaflets challenged with Colletotrichum truncatum by combining chlorophyll a fluorescence images with gas-exchange measurements and photosynthetic pigment pools. There were no significant differences between non-inoculated and inoculated plants in leaf water potential, apparent hydraulic conductance, net CO assimilation rate, stomatal conductance to water vapor and transpiration rate. For internal CO concentration, significant difference between non-inoculated and inoculated plants occurred only at 36 h after inoculation.

View Article and Find Full Text PDF

Considering the effect of silicon (Si) in reducing the blast symptoms on wheat in a scenario where the losses in the photosynthetic capacity of the infected plants is lowered, this study investigated the ability of using the incident light, the chloroplastidic pigments (chlorophylls and carotenoids) alterations and the possible role of carotenoids on the process of light dissipation on wheat plants non-supplied (-Si) or supplied (+Si) with Si and inoculated or not with Pyricularia oryzae. For + Si plants, blast severity was reduced compared to -Si plants. Reductions in the concentration of photosynthetic pigments (total chlorophyll, violanxanthin + antheraxanthin + zeaxanthin, β-carotene and lutein) were greater for inoculated -Si plants than for inoculated + Si ones.

View Article and Find Full Text PDF

Silicon (Si) plays a pivotal role in the nutritional status of a wide variety of monocot and dicot plant species and helps them, whether directly or indirectly, counteract abiotic and/or biotic stresses. In general, plants with a high root or shoot Si concentration are less prone to pest attack and exhibit enhanced tolerance to abiotic stresses such as drought, low temperature, or metal toxicity. However, the most remarkable effect of Si is the reduction in the intensities of a number of seedborne, soilborne, and foliar diseases in many economically important crops that are caused by biotrophic, hemibiotrophic, and necrotrophic plant pathogens.

View Article and Find Full Text PDF

Silicon (Si) has been recognized as a beneficial element to improve rice (Oryza sativa L.) grain yield. Despite some evidence suggesting that this positive effect is observed when Si is supplied along the reproductive growth stage (from panicle initiation to heading), it remains unclear whether its supplementation during distinct growth phases can differentially impact physiological aspects of rice and its yield and the underlying mechanisms.

View Article and Find Full Text PDF

This study investigated the effect of silicon (Si) on the potentiation of rice resistance against leaf scald at the microscopic level. Rice plants ('Primavera') were grown in a nutrient solution containing 0 (-Si) or 2 mM (+Si) Si. The foliar Si concentration of the +Si plants (3.

View Article and Find Full Text PDF

Considering the importance of target spot, caused by the fungus Corynespora cassiicola, to reduce soybean yield in Brazil and that more basic information regarding the soybean-C. cassiicola interaction is needed, the present study aimed to investigate whether the cellular damage caused by C. cassiicola infection could activate the antioxidant system and whether a more efficient antioxidant system could be associated with an increase in soybean resistance to target spot.

View Article and Find Full Text PDF

Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (-Si or +Si, respectively) with and without P.

View Article and Find Full Text PDF

This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded.

View Article and Find Full Text PDF