We report on the nonlinear temporal compression of mJ energy pulses from a Ti:Sa chirped pulse amplifier system in a multipass cell filled with argon. The pulses are compressed from 30 fs down to 5.3 fs, corresponding to two optical cycles.
View Article and Find Full Text PDFWe present and characterize a very efficient optical device that employs the plasma mirror technique to increase the contrast of high-power laser systems. Contrast improvements higher than 10(4) with 50% transmission are shown to be routinely achieved on a typical 10 TW laser system when the pulse is reflected on two consecutive plasma mirrors. Used at the end of the laser system, this double plasma mirror preserves the spatial profile of the initial beam, is unaffected by shot-to-shot fluctuations, and is suitable for most high peak power laser systems.
View Article and Find Full Text PDFWe demonstrate the use of a plasma mirror to obtain 60-fs 10-TW laser pulses with a temporal contrast of 10(8) on a nanosecond time scale and 10(6) on a picosecond time scale, and we use these high-contrast pulses to generate high harmonics by nonlinear reflection on a plasma with a steep electronic density gradient. Well-collimated harmonics up to 20th order are observed for a laser intensity of approximately equal to 3 x 10(17) W/cm2, whereas no harmonics are obtained without the plasma mirror.
View Article and Find Full Text PDF