Publications by authors named "Fabrice Parat"

Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation.

View Article and Find Full Text PDF

Resistance to treatments is one of the leading causes of cancer therapy failure. Oxaliplatin is a standard chemotherapy used to treat metastatic colorectal cancer. However, its efficacy is greatly reduced by the development of resistances.

View Article and Find Full Text PDF

The Microtubule-Associated Protein Tau is expressed in several cancers, including low-grade gliomas and glioblastomas. We have previously shown that Tau is crucial for the 2D motility of several glioblastoma cell lines, including U87-MG cells. Using an RNA interference (shRNA), we tested if Tau contributed to glioblastoma in vivo tumorigenicity and analyzed its function in a 3D model of multicellular spheroids (MCS).

View Article and Find Full Text PDF

VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherin) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown.

View Article and Find Full Text PDF

The pathological significance of Tau (encoded by ) in mechanisms driving cell migration in glioblastoma is unclear. By using an shRNA approach to deplete microtubule-stabilizing Tau in U87 cells, we determined its impact on cytoskeletal coordination during migration. We demonstrated here that the motility of these Tau-knockdown cells (shTau cells) was significantly (36%) lower than that of control cells.

View Article and Find Full Text PDF

The NADPH oxidase proteins catalyse the formation of superoxide anion which act as signalling molecules in physiological and pathological processes. Nox1-dependent NADPH oxidase is expressed in heart, lung, colon, blood vessels and brain. Different strategies involving Nox1 inhibition based on diphenylene iodonium derivatives are currently tested for colorectal cancer therapy.

View Article and Find Full Text PDF

α6β4 integrin is the main component of hemidesmosomes (HD) that stably anchor the epithelium to the underlying basement membrane. Epithelial cell migration requires HD remodelling, which can be promoted by epidermal growth factor (EGF). We previously showed that extracellular nucleotides inhibit growth factor-induced keratinocyte migration.

View Article and Find Full Text PDF

Insulin-like growth factor-I (IGF-I) activation of phosphoinositol 3-kinase (PI3K) is an essential pathway for keratinocyte migration that is required for epidermis wound healing. We have previously reported that activation of Galpha((q/11))-coupled-P2Y(2) purinergic receptors by extracellular nucleotides delays keratinocyte wound closure. Here, we report that activation of P2Y(2) receptors by extracellular UTP inhibits the IGF-I-induced p110alpha-PI3K activation.

View Article and Find Full Text PDF

Reepithelialization is a critical step in wound healing. It is initiated by keratinocyte migration at the wound edges. After wounding, extracellular nucleotides are released by keratinocytes and other skin cells.

View Article and Find Full Text PDF

During neurite elongation, migrating growth cones encounter both permissive and inhibitory substrates, such as laminin and MAG (myelin-associated glycoprotein), respectively. Here, we demonstrated on two neuronal cell lines (PC12 and N1E-115), that laminin and collagen hampered, in a dose-dependent manner, MAG inhibitory activity on several integrin functions, i.e.

View Article and Find Full Text PDF