Aims/hypothesis: Cytotoxic T cells and macrophages contribute to beta cell destruction in type 1 diabetes at least in part through the production of cytokines such as IL-1β, IFN-γ and TNF-α. We have recently shown the IL-17 pathway to be activated in circulating T cells and pancreatic islets of type 1 diabetes patients. Here, we studied whether IL-17A upregulates the production of chemokines by human pancreatic islets, thus contributing to the build-up of insulitis.
View Article and Find Full Text PDFObjective: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused in almost all cases by homozygosity for a GAA trinucleotide repeat expansion in the frataxin gene. Frataxin is a mitochondrial protein involved in iron homeostasis. FRDA patients have a high prevalence of diabetes, the pathogenesis of which is not known.
View Article and Find Full Text PDFIn the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1β, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in β-cells, leading to local inflammation and β-cell apoptosis.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a chronic autoimmune disease characterized by immune infiltration of the pancreatic islets resulting in an inflammatory reaction named insulitis and subsequent beta cell apoptosis. During the course of insulitis beta cell death is probably caused by direct contact with activated macrophages and T-cells, and/or exposure to soluble mediators secreted by these cells, including cytokines, nitric oxide, and free oxygen radicals. In vitro exposure of beta cells to the cytokines interleukin(IL)-1β + interferon(IFN)-γ or to tumor necrosis factor(TNF)-α + IFN-γ induces beta cell dysfunction and ultimately apoptosis.
View Article and Find Full Text PDFObjective: Genome-wide association studies allowed the identification of several associations between specific loci and type 1 diabetes (T1D). However, the mechanisms by which most candidate genes predispose to T1D remain unclear. We presently evaluated the mechanisms by which PTPN2, a candidate gene for T1D, modulates β-cell apoptosis after exposure to type I and II interferons (IFNs), cytokines that contribute to β-cell loss in early T1D.
View Article and Find Full Text PDFType 1 diabetes is characterized by local inflammation (insulitis) in the pancreatic islets causing β-cell loss. The mitochondrial pathway of apoptosis is regulated by the balance and interaction between Bcl-2 members. Here we clarify the molecular mechanism of β-cell death triggered by the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interferon (IFN)-γ.
View Article and Find Full Text PDFObjective: CD4 T-cells secreting interleukin (IL)-17 are implicated in several human autoimmune diseases, but their role in type 1 diabetes has not been defined. To address the relevance of such cells, we examined IL-17 secretion in response to β-cell autoantigens, IL-17A gene expression in islets, and the potential functional consequences of IL-17 release for β-cells.
Research Design And Methods: Peripheral blood CD4 T-cell responses to β-cell autoantigens (proinsulin, insulinoma-associated protein, and GAD65 peptides) were measured by IL-17 enzyme-linked immunospot assay in patients with new-onset type 1 diabetes (n = 50).
Zinc is essential for the crystallization of insulin in pancreatic β-cells and is thought to induce apoptosis in a dose-dependent manner, thereby regulating β-cell mass. Therefore, a tight intracellular regulation of Zn²(+) is required. The zinc-transporter family SLC30A is an important factor in the regulation of zinc homeostasis.
View Article and Find Full Text PDFCytokines produced by islet-infiltrating immune cells induce β-cell apoptosis in type 1 diabetes. The IFN-γ-regulated transcription factors STAT1/IRF-1 have apparently divergent effects on β-cells. Thus, STAT1 promotes apoptosis and inflammation, whereas IRF-1 down-regulates inflammatory mediators.
View Article and Find Full Text PDFObjective: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha + IFN-gamma in primary rat beta-cells.
View Article and Find Full Text PDFbeta-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a 'dialog' between beta-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects beta-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication.
View Article and Find Full Text PDFEnteroviral infections are associated with type I diabetes. The mechanisms by which viruses or viral products such as double-stranded RNA (dsRNA) affect pancreatic beta cell function and survival remain unclear. We have shown that extracellular dsRNA induces beta cell death via Toll-like receptor-3 (TLR3) signaling whereas cytosolic dsRNA triggers the production of type I interferons and apoptosis via a TLR3-independent process.
View Article and Find Full Text PDFObjective: The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in beta-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal beta-cells, besides evaluating its role in cytokine-induced signaling and beta-cell apoptosis.
View Article and Find Full Text PDFOverexpression of CD95 (Fas/Apo-1) ligand (CD95L) has been shown to induce T cell tolerance but also, neutrophilic inflammation and rejection of allogeneic tissue. We explored the capacity of dendritic cells (DCs) genetically engineered to overexpress CD95L to induce an antitumor response. We first found that DCs overexpressing CD95L, in addition to MHC class I-restricted OVA peptides (CD95L-OVA-DCs), induced increased antigen-specific CD8(+) T cell responses as compared with DCs overexpressing OVA peptides alone.
View Article and Find Full Text PDFFree fatty acids (FFA) cause apoptosis of pancreatic beta-cells and might contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary beta-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling.
View Article and Find Full Text PDFAccumulating evidence indicates that beta-cells die by apoptosis in T1DM (Type 1 diabetes mellitus). Apoptosis is an active gene-directed process, and recent observations suggest that beta-cell apoptosis depends on the parallel and/or sequential up- and down-regulation of hundreds of genes controlled by key transcription factors such as NF-kappaB (nuclear factor kappaB) and STAT-1 (signal transducer and activator of transcription 1). Understanding the regulation of these gene networks, and how they modulate beta-cell death and the 'dialogue' between beta-cells and the immune system, will require a systems biology approach to the problem.
View Article and Find Full Text PDFKidney ischemia/reperfusion injury (I/R) is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR).
View Article and Find Full Text PDFMaturation of dendritic cells (DC) is a critical step in the induction of T cell responses and depends on the activation of NF-kappaB transcription factors. Therefore, inhibition of NF-kappaB activation has been proposed as a strategy to maintain DC in an immature stage and to promote immune tolerance. Herein, we generated murine myeloid DC expressing a mutated IkappaBalpha acting as a superrepressor of the classical NF-kappaB pathway (s-rIkappaB DC) to investigate the consequences of NF-kappaB inhibition on the ability of DC to prime T cell responses.
View Article and Find Full Text PDFBackground: Allografts are occasionally accepted in the absence of immunosuppression. Because naturally occurring CD4(+)CD25(+) regulatory T cells (natural CD25(+) Treg cells) have been shown to inhibit allograft rejection, we investigated their influence on the outcome of allografts in nonimmunosuppressed mouse recipients.
Methods: We compared survival times of male CBA/Ca skin grafts in female CBA/Ca recipients expressing a transgenic anti-HY T-cell receptor on a RAG-1(+/+) (A1[M]RAG+) or a RAG-1(-/-) (A1[M]RAG-) background.