Am J Physiol Regul Integr Comp Physiol
April 2015
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia.
View Article and Find Full Text PDFWe previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used.
View Article and Find Full Text PDFThe monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo.
View Article and Find Full Text PDFCourtship conditioning is an associative learning paradigm in Drosophila melanogaster, wherein male courtship behavior is modified by experience with unreceptive, previously mated females. While the training experience with mated females involves multiple sensory and behavioral interactions, we hypothesized that female cuticular hydrocarbons function as a specific chemosensory conditioned stimulus in this learning paradigm. The effects of training with mated females were determined in courtship tests with either wild-type virgin females as courtship targets, or with target flies of different genotypes that express distinct cuticular hydrocarbon (CH) profiles.
View Article and Find Full Text PDFThe evolution of communication is a fundamental biological problem. The genetic control of the signal and its reception must be tightly coadapted, especially in inter-individual sexual communication. However, there is very little experimental evidence for tight genetic linkage connecting the emission of a signal and its reception.
View Article and Find Full Text PDFSex pheromones are intraspecific chemical signals that are crucial for mate attraction and discrimination. In Drosophila melanogaster, the predominant hydrocarbons on the cuticle of mature female and male flies are radically different and tend to stimulate or inhibit male courtship, respectively. This sexual difference depends largely upon the number of double bonds (one in males and two in females) added by desaturase enzymes.
View Article and Find Full Text PDFSex pheromones are chemical signals used for mate attraction and discrimination in many invertebrate species. These compounds are often complex mixtures with different components having different effects. We tested live Drosophila melanogaster mutant female flies genetically depleted for unsaturated cuticular hydrocarbons, which were then perfumed with these substances to measure their influence on various aspects of reproduction.
View Article and Find Full Text PDF