Studying ontogeny in both extant and extinct species can unravel the mechanisms underlying mammal diversification and specialization. Among mammalian clades, Cetartiodactyla encompass species with a wide range of adaptations, and ontogenetic evidence could clarify longstanding debates on the origins of modern specialized families. Here, we study the evolution of dental eruption patterns in early diverging cetartiodactyls to assess the ecological and biological significance of this character and shed new light on phylogenetic issues.
View Article and Find Full Text PDFRodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel-secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ameloblasts produce the astonishing microstructural complexity of enamel, and how this subtle architecture evolved through time.
View Article and Find Full Text PDFAnoplotheriinae are Paleogene European artiodactyls that present a unique postcranial morphology with a tridactyl autopodium and uncommon limb orientation. This peculiar morphology led to various hypotheses regarding anoplotheriine locomotion from semiaquatic to partly arboreal or partly bipedal. The petrosal bone, housing the organs of balance, and hearing, offers complementary information to postcranial morphology on the ecology of this uncommon artiodactyl.
View Article and Find Full Text PDFAccording to molecular data, hippopotamuses and cetaceans form a clade excluding other extant cetartiodactyls. Despite a wealth of spectacular specimens documenting cetacean evolution, this relationship remains poorly substantiated by the fossil record. Indeed, the evolutionary path leading from the hippo-cetacean ancestor to Hippopotamidae is plagued by missing fossil data and phylogenetic uncertainties.
View Article and Find Full Text PDFRecent excavations in northwestern Kenya have recovered a vertebrate fauna of late early or early late Oligocene age. Among the mammal remains, a fragmentary lower jaw and an isolated upper molar have been attributed to a small primate, Lokonepithecus manai gen. et sp.
View Article and Find Full Text PDFThe fossil record of the Hippopotamidae can shed light on three major issues in mammalian evolution. First, as the Hippopotamidae are the extant sister group of Cetacea, gaining a better understanding of the origin of the Hippopotamidae and of their Paleogene ancestors will be instrumental in clarifying phylogenetic relationships within Cetartiodactyla. Unfortunately, the data relevant to hippopotamid origins have generally been ignored in phylogenetic analyses of cetartiodactyls.
View Article and Find Full Text PDFThe affinities of the Hippopotamidae are at the core of the phylogeny of Cetartiodactyla (even-toed mammals: cetaceans, ruminants, camels, suoids, and hippos). Molecular phylogenies support Cetacea as sister group of the Hippopotamidae, implying a long ghost lineage between the earliest cetaceans (approximately 53 Ma) and the earliest hippopotamids (approximately 16 Ma). Morphological studies have proposed two different sister taxa for hippopotamids: suoids (notably palaeochoerids) or anthracotheriids.
View Article and Find Full Text PDFAges were determined at two hominid localities from the Chad Basin in the Djurab Desert (Northern Chad). In the Koro Toro fossiliferous area, KT 12 locality (16 degrees 00'N, 18 degrees 53'E) was the site of discovery of Australopithecus bahrelghazali (Abel) and in the Toros-Menalla fossiliferous area, TM 266 locality (16 degrees 15'N, 17 degrees 29'E) was the site of discovery of Sahelanthropus tchadensis (Toumaï). At both localities, the evolutive degree of the associated fossil mammal assemblages allowed a biochronological estimation of the hominid remains: early Pliocene (3-3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2006
Recent discovery of an abundant and diverse late Miocene fauna at Toros-Ménalla (Chad, central Africa) by the Mission Paléoanthropologique Franco-Tchadienne provides a unique opportunity to examine African faunal and hominid evolution relative to the early phases of the Saharan arid belt. This study presents evidence from an African Miocene anthracotheriid Libycosaurus, particularly well documented at Toros-Ménalla. Its remains reveal a large semiaquatic mammal that evolved an autapomorphic upper fifth premolar (extremely rare in Cenozoic mammals).
View Article and Find Full Text PDFThe origin of late Neogene Hippopotamidae (Artiodactyla) involves one of the most serious conflicts between comparative anatomy and molecular biology: is Artiodactyla paraphyletic? Molecular comparisons indicate that Cetacea should be the modern sister group of hippos. This finding implies the existence of a fossil lineage linking cetaceans (first known in the early Eocene) to hippos (first known in the middle Miocene). The relationships of hippos within Artiodactyla are challenging, and the immediate affinities of Hippopotamidae have been studied by biologists for almost two centuries without resolution.
View Article and Find Full Text PDFAll six known specimens of the early hominid Sahelanthropus tchadensis come from Toros-Menalla site 266 (TM 266), a single locality in the Djurab Desert, northern Chad, central Africa. Here we present a preliminary analysis of the palaeontological and palaeoecological context of these finds. The rich fauna from TM 266 includes a significant aquatic component such as fish, crocodiles and amphibious mammals, alongside animals associated with gallery forest and savannah, such as primates, rodents, elephants, equids and bovids.
View Article and Find Full Text PDFThe search for the earliest fossil evidence of the human lineage has been concentrated in East Africa. Here we report the discovery of six hominid specimens from Chad, central Africa, 2,500 km from the East African Rift Valley. The fossils include a nearly complete cranium and fragmentary lower jaws.
View Article and Find Full Text PDF