Publications by authors named "Fabrice Lemaitre"

Anti-PD-1 therapy targets intratumoral CD8+ T cells to promote clinical responses in cancer patients. Recent evidence suggests an additional activity in the periphery, but the underlying mechanism is unclear. Here, we show that anti-PD-1 mAb enhances CD8+ T cell responses in tumor-draining lymph nodes by stimulating cytokine production in follicular helper T cells (Tfh).

View Article and Find Full Text PDF

CD4 T cells and CD4 chimeric antigen receptor (CAR) T cells display highly variable antitumor activity in preclinical models and in patients; however, the mechanisms dictating how and when CD4 T cells promote tumor regression are incompletely understood. With the help of functional intravital imaging, we report that interferon (IFN)-γ production but not perforin-mediated cytotoxicity was the dominant mechanism for tumor elimination by anti-CD19 CD4 CAR T cells. Mechanistically, mouse or human CD4 CAR T-cell-derived IFN-γ diffused extensively to act on tumor cells at distance selectively killing tumors sensitive to cytokine-induced apoptosis, including antigen-negative variants.

View Article and Find Full Text PDF

T cells become activated following one or multiple contacts with antigen-presenting cells. Calcium influx is a key signaling event elicited during these cellular interactions; however, it is unclear whether T cells recall and integrate calcium signals elicited during temporally separated contacts. To study the integration of calcium signals, we designed a programmable, multiplex illumination strategy for temporally patterned optogenetics (TEMPO).

View Article and Find Full Text PDF

The regulation of cellular energy metabolism is central to most physiological and pathophysiological processes. However, most current methods have limited ability to functionally probe metabolic pathways in individual cells. Here, we describe SPICE-Met (Single-cell Profiling and Imaging of Cell Energy Metabolism), a method for profiling energy metabolism in single cells using flow cytometry or imaging.

View Article and Find Full Text PDF

Neutrophils form cellular clusters or swarms in response to injury or pathogen intrusion. Yet, intracellular signaling events favoring this coordinated response remain to be fully characterized. Here, we show that calcium signals play a critical role during mouse neutrophil clustering around particles of zymosan, a structural fungal component.

View Article and Find Full Text PDF

Dendritic cell (DC) activation by viral RNA sensors such as TLR3 and MDA-5 is critical for initiating antiviral immunity. Optimal DC activation is promoted by type I interferon (IFN) signaling which is believed to occur in either autocrine or paracrine fashion. Here, we show that neither autocrine nor paracrine type I IFN signaling can fully account for DC activation by poly(I:C) in vitro and in vivo.

View Article and Find Full Text PDF

Cytotoxic T cells (CTLs) can eliminate tumor cells through the delivery of lethal hits, but the actual efficiency of this process in the tumor microenvironment is unclear. Here, we visualized the capacity of single CTLs to attack tumor cells in vitro and in vivo using genetically encoded reporters that monitor cell damage and apoptosis. Using two distinct malignant B-cell lines, we found that the majority of cytotoxic hits delivered by CTLs in vitro were sublethal despite proper immunological synapse formation, and associated with reversible calcium elevation and membrane damage in the targets.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy relies on the activity of a large pool of tumor-targeting cytotoxic effectors. Whether CAR T cells act autonomously or require interactions with the tumor microenvironment (TME) remains incompletely understood. Here, we report an essential cross-talk between CAR T cell subsets and the TME for tumor control in an immunocompetent mouse B cell lymphoma model of anti-CD19 CAR T cell therapy.

View Article and Find Full Text PDF

Anti-CD20 antibody (mAb) represents an effective strategy for the treatment of B cell malignancies, possibly involving complement activity, antibody-dependent cellular cytotoxicity and phagocytosis (ADP). While ADP by Kupffer cells deplete circulating tumors, mechanisms targeting non-circulating tumors remain unclear. Using intravital imaging in a model of B cell lymphoma, we establish here the dominance and limitations of ADP in the bone marrow (BM).

View Article and Find Full Text PDF

The cytokine IFN-γ produced by tumor-reactive T cells is a key effector molecule with pleiotropic effects during anti-tumor immune responses. While IFN-γ production is targeted at the immunological synapse, its spatiotemporal activity within the tumor remains elusive. Here, we report that while IFN-γ secretion requires local antigen recognition, IFN-γ diffuses extensively to alter the tumor microenvironment in distant areas.

View Article and Find Full Text PDF

By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation.

View Article and Find Full Text PDF

CAR T cells represent a potentially curative strategy for B cell malignancies. However, the outcome and dynamics of CAR T cell interactions in distinct anatomical sites are poorly understood. Using intravital imaging, we tracked interactions established by anti-CD19 CAR T cells in B cell lymphoma-bearing mice.

View Article and Find Full Text PDF

Recruitment of immune cells with antimicrobial activities is essential to fight local infections but has the potential to trigger immunopathology. Whether the immune system has the ability to sense inflammation intensity and self-adjust accordingly to limit tissue damage remains to be fully established. During local infection with an intracellular pathogen, we have shown that nitric oxide (NO) produced by recruited monocyte-derived cells was essential to limit inflammation and cell recruitment.

View Article and Find Full Text PDF

T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs.

View Article and Find Full Text PDF

The inflammasome is activated in response to a variety of pathogens and has an important role in shaping adaptive immunity, yet the spatiotemporal orchestration of inflammasome activation in vivo and the mechanisms by which it promotes an effective immune response are not fully understood. Using an in vivo reporter to visualize inflammasome assembly, we establish the distribution, kinetics and propagation of the inflammasome response to a local viral infection. We show that modified vaccinia Ankara virus induces inflammasome activation in subcapsular sinus (SCS) macrophages, which is immediately followed by cell death and release of extracellular ASC specks.

View Article and Find Full Text PDF

T lymphocytes are highly motile cells that decelerate upon antigen recognition. These cells can either completely stop or maintain a low level of motility, forming contacts referred to as synapses or kinapses, respectively. Whether similar or distinct molecular mechanisms regulate T-cell deceleration during synapses or kinapses is unclear.

View Article and Find Full Text PDF

The small intestine epithelium (SI-Ep) harbors millions of unconventional (γδ and CD4(-) CD8(-) NK1.1(-) TCRαβ) and conventional (CD8αβ and CD4) T cells, designated intraepithelial lymphocytes (IELs). Here, we identified the circulating pool of SI-Ep-tropic T cells and studied their capacity to colonize the SI-Ep under steady-state conditions in SPF mice.

View Article and Find Full Text PDF

Effector T cell responses rely on a phenotypically and functionally heterogeneous population of cells. Whether this diversity is programmed before clonal expansion or in later phases as a result of stochastic events or asymmetric cell division is not fully understood. In this study, we first took advantage of a sensitive in vitro assay to analyze the composition of single CD8(+) T cell progenies.

View Article and Find Full Text PDF

Transcription factors orchestrate T-lineage differentiation in the thymus. One critical checkpoint involves Notch1 signaling that instructs T-cell commitment at the expense of the B-lineage program. While GATA-3 is required for T-cell specification, its mechanism of action is poorly understood.

View Article and Find Full Text PDF

Monoclonal antibodies represent a promising approach to fight a variety of tumors, but their mode of action remains to be fully understood. NK cells can recognize Ab-coated targets, as well as stress ligands, on tumor cells. In this study, we investigated how NK cells integrate both kinds of activating signals.

View Article and Find Full Text PDF

Contraction is a critical phase of immunity whereby the vast majority of effector T cells die by apoptosis, sparing a population of long-lived memory cells. Where, when, and why contraction occurs has been difficult to address directly due in large part to the rapid clearance of apoptotic T cells in vivo. To circumvent this issue, we introduced a genetically encoded reporter for caspase-3 activity into naive T cells to identify cells entering the contraction phase.

View Article and Find Full Text PDF

Although regulatory T cells (T(regs)) are known to suppress self-reactive autoimmune responses, their role during T cell responses to nonself antigens is not well understood. We show that T(regs) play a critical role during the priming of immune responses in mice. T(reg) depletion induced the activation and expansion of a population of low-avidity CD8(+) T cells because of overproduction of CCL-3/4/5 chemokines, which stabilized the interactions between antigen-presenting dendritic cells and low-avidity T cells.

View Article and Find Full Text PDF

Natural killer (NK) cells become activated during viral infection in response to cytokines or to engagement of NK cell activating receptors. However, the identity of cells sensing viral particles and mediating NK cell activation has not been defined. Here, we show that local administration of a modified vaccinia virus Ankara vaccine in mice results in the accumulation of NK cells in the subcapsular area of the draining lymph node and their activation, a process that is strictly dependent on type I IFN signaling.

View Article and Find Full Text PDF

HIV controllers are rare individuals who spontaneously control HIV replication in the absence of antiretroviral therapy. To identify parameters of the CD4 response that may contribute to viral control rather than merely reflect a persistently low viremia, we compared the T helper profiles in two groups of patients with more than 10 years of viral suppression: HIV controllers from the Agence Nationale de Recherche sur le SIDA et les Hépatites Virales (ANRS) CO18 cohort (n = 26) and efficiently treated patients (n = 16). Cells specific for immunodominant Gag and cytomegalovirus (CMV) peptides were evaluated for the production of 10 cytokines and cytotoxicity markers and were also directly quantified ex vivo by major histocompatibility complex (MHC) class II tetramer staining.

View Article and Find Full Text PDF

Upon antigen recognition, T cells form either static (synapses) or migratory (kinapses) contacts with antigen-presenting cells. Addressing whether synapses and kinapses result in distinct T cell receptor (TCR) signals has been hampered by the inability to simultaneously assess T cell phenotype and behavior. Here, we introduced dynamic in situ cytometry (DISC), a combination of intravital multiphoton imaging and flow cytometry-like phenotypic analysis.

View Article and Find Full Text PDF