We introduce the gapped coherent state in the form of a single-photon source (SPS) that consists of uncorrelated photons as a background, except that we demand that no two photons can be closer in time than a time gap [Formula: see text]. While no obvious quantum mechanism is yet identified to produce exactly such a photon stream, a numerical simulation is easily achieved by first generating an uncorrelated (Poissonian) signal and then for each photon in the list, either adding such a time gap or removing all photons that are closer in time from each other than [Formula: see text]. We study the statistical properties of such a hypothetical signal, which exhibits counter-intuitive features.
View Article and Find Full Text PDFQuantum vortices are the quantized version of classical vortices. Their center is a phase singularity or vortex core around which the flow of particles as a whole circulates and is typical in superfluids, condensates and optical fields. However, the exploration of the motion of the phase singularities in coherently-coupled systems is still underway.
View Article and Find Full Text PDFQuantum vortices are the analogue of classical vortices in optics, Bose-Einstein condensates, superfluids and superconductors, where they provide the elementary mode of rotation and orbital angular momentum. While they mediate important pair interactions and phase transitions in nonlinear fluids, their linear dynamics is useful for the shaping of complex light, as well as for topological entities in multi-component systems, such as full Bloch beams. Here, setting a quantum vortex into directional motion in an open-dissipative fluid of microcavity polaritons, we observe the self-splitting of the packet, leading to the trembling movement of its center of mass, whereas the vortex core undergoes ultrafast spiraling along diverging and converging circles, in a sub-picosecond precessing fashion.
View Article and Find Full Text PDFResonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation.
View Article and Find Full Text PDFSemiconductor devices are strong competitors in the race for the development of quantum computational systems. In this work, we interface two semiconductor building blocks of different dimensionalities with complementary properties: (1) a quantum dot hosting a single exciton and acting as a nearly ideal single-photon emitter and (2) a quantum well in a 2D microcavity sustaining polaritons, which are known for their strong interactions and unique hydrodynamic properties, including ultrafast real-time monitoring of their propagation and phase mapping. In the present experiment, we can thus observe how the injected single particles propagate and evolve inside the microcavity, giving rise to hydrodynamic features typical of macroscopic systems despite their genuine intrinsic quantum nature.
View Article and Find Full Text PDFWe demonstrate theoretically the bundle emission of n strongly correlated phonons in an acoustic cavity QED system. The mechanism relies on Stokes resonances that generate super-Rabi oscillations between states with a large difference in their number of excitations, which, combined with dissipation, transfer coherently pure n-phonon states outside of the cavity. This process works with close to perfect purity over a wide range of parameters and is tunable optically with well-resolved operation conditions.
View Article and Find Full Text PDFNegative effective masses can be realized by engineering the dispersion relation of a variety of quantum systems. A recent experiment with spin-orbit coupled Bose-Einstein condensates has shown that a negative effective mass can halt the free expansion of the condensate and lead to fringes in the density [M. A.
View Article and Find Full Text PDFPolaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories.
View Article and Find Full Text PDFWe adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events.
View Article and Find Full Text PDFThe Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order.
View Article and Find Full Text PDFWe report a record-size, two-dimensional polariton condensate of a fraction of a millimeter radius free from the presence of an exciton reservoir. This macroscopically occupied state is formed by the ballistically expanding polariton flow that relaxes and condenses over a large area outside of the excitation spot. The density of this trap-free condensate is <1 polariton/μm^{2}, reducing the phase noise induced by the interaction energy.
View Article and Find Full Text PDFThe dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates.
View Article and Find Full Text PDFWe study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields-much like self-accelerating beams-shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back.
View Article and Find Full Text PDFThe on-chip generation of nonclassical states of light is a key requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics, such nonclassical light can be generated from self-assembled quantum dots strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon tunneling) or diminish (photon blockade) the probability for a second photon to enter the cavity.
View Article and Find Full Text PDFWe report observation of oscillations in the dynamics of a microcavity polariton condensate formed under pulsed nonresonant excitation. While oscillations in a condensate have always been attributed to Josephson mechanisms due to a chemical potential unbalance, here we show that under some localization conditions of the condensate, they may arise from relaxation oscillations, a pervasive classical dynamics that repeatedly provokes the sudden decay of a reservoir, shutting off relaxation as the reservoir is replenished. Using nonresonant excitation, it is thus possible to obtain condensate injection pulses with a record frequency of 0.
View Article and Find Full Text PDFWe revisit the exciton mechanism of superconductivity in the framework of microcavity physics, replacing virtual excitons as a binding agent of Cooper pairs by excitations of an exciton-polariton Bose-Einstein condensate. We consider a model microcavity where a quantum well with a two-dimensional electron gas is sandwiched between two undoped quantum wells, where a polariton condensate is formed. We show that the critical temperature for superconductivity dramatically increases with the condensate population, opening a new route towards high-temperature superconductivity.
View Article and Find Full Text PDFWe show that strong coupling (SC) of light and matter as it is realized with quantum dots in microcavities differs substantially from the paradigm of atoms in optical cavities. The type of pumping used in semiconductors yields new criteria to achieve SC, with situations where the pump hinders, or on the contrary, favors it. We analyze one of the seminal experimental observation of SC of a quantum dot in a pillar microcavity [Reithmaier, Nature (London) 432, 197 (2004)10.
View Article and Find Full Text PDF