Electromechanical (EM) coupling-the conversion of energy between electric and mechanical forms-in ferroelectrics has been used for a broad range of applications. Ferroelectric polymers have weak EM coupling that severely limits their usefulness for applications. We introduced a small amount of fluorinated alkyne (FA) monomers (<2 mol %) in relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE) terpolymer that markedly enhances the polarization change with strong EM coupling while suppressing other polarization changes that do not contribute to it.
View Article and Find Full Text PDFTactile sensing, particularly the detection of object slippage, is required for skillful object handling by robotic grippers. The real-time measurement and identification of the dynamic shear forces that result from slippage events are crucial for slip detection and effective object interaction. In this study, a ferroelectric polymer-based printed soft sensor for object slippage detection was developed and fabricated by screen printing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Tactile perception in large-area displays is currently attracting substantial research attention since, in conjunction with visible and auditory sensations, it provides more immersive and realistic interactions with displayed contents. Here, a new vibrotactile display based on the fretting phenomenon is developed for the first time to provide localized tactile feedback on a large-area display. Normal pressure by a human fingertip activates a locally concentrated electric field in a relaxor ferroelectric polymer (RFP) film under the contact area, which produces a localized electrostrictive strain.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFThe ability to monitor subtle changes in vital and arterial signals using flexible devices attached to the human skin can be valuable for the detection of various health conditions such as cardiovascular disease. Conventional Si device technologies are being utilised in traditional clinical systems; however, its fabrication is not easy owing to the difficulties in adapting to conventional processes. Here, we present the development of a fully printed, wearable, ferroelectric-polymer vital sensor for monitoring the human pulse wave/rate on the skin.
View Article and Find Full Text PDF