Tissue morphogenesis results from a tight interplay between gene expression, biochemical signaling and mechanics. Although sequencing methods allow the generation of cell-resolved spatiotemporal maps of gene expression, creating similar maps of cell mechanics in three-dimensional (3D) developing tissues has remained a real challenge. Exploiting the foam-like arrangement of cells, we propose a robust end-to-end computational method called 'foambryo' to infer spatiotemporal atlases of cellular forces from fluorescence microscopy images of cell membranes.
View Article and Find Full Text PDFBackground: Compartmental analysis is a standard method to quantify metabolic processes using fluorodeoxyglucose-positron emission tomography (FDG-PET). For liver studies, this analysis is complex due to the hepatocyte capability to dephosphorylate and release glucose and FDG into the blood. Moreover, a tracer is supplied to the liver by both the hepatic artery and the portal vein, which is not visible in PET images.
View Article and Find Full Text PDF