The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes.
View Article and Find Full Text PDFMicroproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts.
View Article and Find Full Text PDFTranscriptional and translational control are key determinants of gene expression, however, to what extent these two processes can be collectively coordinated is still poorly understood. Here, we use Nanopore long-read sequencing and cap analysis of gene expression (CAGE-seq) to document the landscape of 5' and 3' untranslated region (UTR) isoforms and transcription start sites of epidermal stem cells, wild-type keratinocytes and squamous cell carcinomas. Focusing on squamous cell carcinomas, we show that a small cohort of genes with alternative 5'UTR isoforms exhibit overall increased translational efficiencies and are enriched in ribosomal proteins and splicing factors.
View Article and Find Full Text PDFThe 5' untranslated region (5'UTR) is critical in determining post-transcriptional control, which is partly mediated by short upstream open reading frames (uORFs) present in half of mammalian transcripts. uORFs are generally considered to provide functionally important repression of the main-ORF by engaging initiating ribosomes, but under specific environmental conditions such as cellular stress, uORFs can become essential to activate the translation of the main coding sequence. In addition, a growing number of uORF-encoded bioactive microproteins have been described, which have the potential to significantly increase cellular protein diversity.
View Article and Find Full Text PDF