Publications by authors named "Fabiola L A C Mestriner"

Microvasculature failure is expected in sepsis and at higher amine concentrations. Therefore, special attention focused individually on microcirculation is needed. Here, we present that methylene blue can prevent leukocytes from adhering to the endothelium in a rat model of lipopolysaccharide-induced endotoxemia.

View Article and Find Full Text PDF

Airway epithelial cells (AEC) infected with SARS-CoV-2 may drive the dysfunction of macrophages during COVID-19. We hypothesized that the direct interaction of AEC with macrophages mediated by CD95/CD95L or indirect interaction mediated by IL-6 signaling are key steps for the COVID-19 severe acute inflammation. The interaction of macrophages with apoptotic and infected AEC increased CD95 and CD163 expression, and induced macrophage death.

View Article and Find Full Text PDF

Sepsis is a systemic inflammatory response syndrome (SIRS) resulting from a severe infection that is characterized by immune dysregulation, cardiovascular derangements, and end-organ dysfunction. The modification of proteins by -linked N-acetylglucosamine (-GlcNAcylation) influences many of the key processes that are altered during sepsis, including the production of inflammatory mediators and vascular contractility. Here, we investigated whether -GlcNAc affects the inflammatory response and cardiovascular dysfunction associated with sepsis.

View Article and Find Full Text PDF

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes.

View Article and Find Full Text PDF

Mineralocorticoid receptors (MRs), which are activated by mineralocorticoids and glucocorticoids, actively participate in mechanisms that affect the structure and function of blood vessels. Although experimental and clinical evidence shows that vascular damage in diabetes is associated with structural alterations in large and small arteries, the role of MR in this process needs further studies. Thus, we tested the hypothesis that MR, through redox-sensitive mechanisms, plays a role in diabetes-associated vascular remodelling.

View Article and Find Full Text PDF

Aldosterone promotes non-genomic effects in endothelial and vascular smooth muscle cells via activation of mineralocorticoid receptors (MR) and G protein-coupled estrogen receptors (GPER). GPER activation is associated with beneficial/protective effects in the vasculature. Considering that vascular dysfunction plays a major role in diabetes-associated complications, we hypothesized that the beneficial effects mediated by vascular GPER activation, in response to aldosterone, are decreased in diabetes.

View Article and Find Full Text PDF

Rationale: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis.

Objectives: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration.

Methods: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration.

View Article and Find Full Text PDF