Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)).
View Article and Find Full Text PDFNeuronal Tau protein hyperphosphorylation (PPtau) is a hallmark of tauopathic neurodegeneration. However, a reversible brain PPtau occurs in mammals during either natural or "synthetic" torpor (ST), a transient deep hypothermic state that can be pharmacologically induced in rats. Since in both conditions a high sleep pressure builds up during the regaining of euthermia, the aim of this work was to assess the possible role of post-ST sleep in PPtau dephosphorylation.
View Article and Find Full Text PDFRats are known to use a 22-kHz ultrasonic vocalisation as a distress call to warn of danger to other members of their group. We monitored 22-kHz ultrasonic vocalisation emissions in rats (lean and obese) as part of a sleep deprivation study to detect the eventual presence of stress during the procedure. Unexpectedly, we detected ultrasonic vocalisation emission during rapid eye movement (REM) sleep, but not during non-REM (NREM) sleep, in all the rats.
View Article and Find Full Text PDFHyperphosphorylated Tau protein (PPTau) is the hallmark of tauopathic neurodegeneration. During "synthetic torpor" (ST), a transient hypothermic state which can be induced in rats by the local pharmacological inhibition of the Raphe Pallidus, a reversible brain Tau hyperphosphorylation occurs. The aim of the present study was to elucidate the - as yet unknown - molecular mechanisms underlying this process, at both a cellular and systemic level.
View Article and Find Full Text PDFHibernation or torpor is considered a possible tool to protect astronauts from the deleterious effects of space radiation that contains high-energy heavy ions. We induced synthetic torpor in rats by injecting adenosine 5'-monophosphate monohydrate (5'-AMP) i.p.
View Article and Find Full Text PDFCounting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have to accomplish to assess the effects of different experimental conditions on biological structures of interest. Although such objects are generally easy to identify, the process of manually annotating cells is sometimes subject to fatigue errors and suffers from arbitrariness due to the operator's interpretation of the borderline cases. We propose a Deep Learning approach that exploits a fully-convolutional network in a binary segmentation fashion to localize the objects of interest.
View Article and Find Full Text PDFTau is a key protein in neurons, where it affects the dynamics of the microtubule system. The hyperphosphorylation of Tau (PP-Tau) commonly leads to the formation of neurofibrillary tangles, as it occurs in tauopathies, a group of neurodegenerative diseases, including Alzheimer's. Hypothermia-related accumulation of PP-Tau has been described in hibernators and during synthetic torpor (ST), a torpor-like condition that has been induced in rats, a non-hibernating species.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFTorpor is a peculiar mammalian behaviour, characterized by the active reduction of metabolic rate, followed by a drop in body temperature. To enter torpor, the activation of all thermogenic organs that could potentially defend body temperature must be prevented. Most of these organs, such as the brown adipose tissue, are controlled by the key thermoregulatory region of the Raphe Pallidus (RPa).
View Article and Find Full Text PDFTau protein is of primary importance for many physiological processes in neurons, where it affects the dynamics of the microtubule system. When hyperphosphorylated (PP-Tau), Tau monomers detach from microtubules and tend to aggregate firstly in oligomers, and then in neurofibrillary tangles, as it occurs in a group of neurodegenerative disorders named thauopathies. A hypothermia-related accumulation of PP-Tau, which is quickly reversed after the return to normothermia, has been shown to occur in the brain of hibernators during torpor.
View Article and Find Full Text PDFObjective: In psychiatry, the presence of residual symptoms after treatment is linked to the definitions of remission and recovery. To identify the presence of residual eating disorder (ED) symptoms and associated non-ED clinical features in remitted and recovered EDs, the current systematic review with meta-analysis was performed.
Method: A systematic review was conducted on residual ED symptoms and non-ED clinical features including comorbid psychopathology, neurophysiological functioning, cognitive functioning, and quality of life in ED patients considered remitted or recovered.
Hibernation has been proposed as a tool for human space travel. In recent years, a procedure to induce a metabolic state known as "synthetic torpor" in non-hibernating mammals was successfully developed. Synthetic torpor may not only be an efficient method to spare resources and reduce psychological problems in long-term exploratory-class missions, but may also represent a countermeasure against cosmic rays.
View Article and Find Full Text PDF