Publications by authors named "Fabio Santomauro"

Background: 2-phenylethanol (2PE) is a fragrance molecule predominantly used in perfumes and the food industry. It can be made from petrochemicals inexpensively, however, this is unsuitable for most food applications. Currently, the main method of production for the bio-derived compound is to extract the trace amounts found in rose petals, which is extremely costly.

View Article and Find Full Text PDF

Nanostructures of transition metal oxides, such as zinc oxide, have attracted considerable interest for solar-energy conversion and photocatalysis. Both applications are sensitive to the transport and trapping of photoexcited charge carriers. The probing of electron trapping has recently become possible using time-resolved element-sensitive methods, such as X-ray spectroscopy.

View Article and Find Full Text PDF

We review our recent results on the implementation of picosecond (ps) X-ray absorption spectroscopy to probe the electronic and geometric structure of centres formed by photoexcitation of solar materials such as TiO2 polymorphs and inorganic Cs-based perovskites. The results show electron localization at Ti defects in TiO2 anatase and rutile and small hole polaron formation in the valence band of CsPbBr3, all within 80 ps. This method is promising for the study of the ultrafast time scales of such processes, especially with the advent of the Swiss X-ray Free Electron Laser (SwissFEL).

View Article and Find Full Text PDF

Generally, biorefineries convert lignocellulosic biomass into a range of biofuels and further value added chemicals. However, conventional biorefinery processes focus mainly on the cellulose and hemicellulose fractions and therefore produce only low quality lignin, which is commonly burnt to provide process heat. To make full use of the biomass, more attention needs to be focused on novel separation techniques, where high quality lignin can be isolated that is suitable for further valorisation into aromatic chemicals and fuel components.

View Article and Find Full Text PDF

We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr and CsPb(ClBr) perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L-edge, and the Cs L-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L-edge.

View Article and Find Full Text PDF

Understanding electron mobility on TiO2 is crucial because of its applications in photocatalysis and solar cells. This work shows that shallow traps believed to be involved in electron migration in TiO2 conduction band are formed upon band gap excitation, i.e.

View Article and Find Full Text PDF

The dynamics of TiO2 conduction band electrons were followed with a novel broadband synchrotron-based transient mid-IR spectroscopy setup. The lifetime of conduction band electrons was found to be dependent on the injection method used. Direct band gap excitation results in a lifetime of 2.

View Article and Find Full Text PDF