Background: Sustainable management requires spatial mapping of both species distribution and human activities to identify potential risk of conflict. The common bottlenose dolphin () is a priority species of the European Union Habitat Directive, thus, to promote its conservation, the understanding of habitat use and distribution, as well as the identification and spatial trend of the human activities which may directly affect populations traits, is pivotal.
Methods: A MaxEnt modeling approach was applied to predict the seasonal (from April to September) habitat use of a small of bottlenose dolphins in the north-western Sardinia (Mediterranean Sea) in relation to environmental variables and the likelihoods of boat and fishing net presence.
One of the most studied aspects of animal communication is the acoustic repertoire difference between populations of the same species. While numerous studies have investigated the variability of bottlenose dolphin whistles between populations, very few studies have focused on the signature whistles alone and the factors underlying differentiation of signature whistles are still poorly understood. Here we describe the signature whistles produced by six distinct geographical units of the common bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea and identify the main determinants of their variability.
View Article and Find Full Text PDFBackground: Marine soundscape is the aggregation of sound sources known as geophony, biophony, and anthrophony. The soundscape analysis, in terms of collection and analysis of acoustic signals, has been proposed as a tool to evaluate the specific features of ecological assemblages and to estimate their acoustic variability over space and time. This study aimed to characterise the Capo Caccia-Isola Piana Marine Protected Area (Italy, Western Mediterranean Sea) soundscape over short temporal (few days) and spatial scales (few km) and to quantify the main anthropogenic and biological components, with a focus on fish biophonies.
View Article and Find Full Text PDFIn a wide variety of habitats, including some heavily urbanised areas, the adaptability of populations of common bottlenose dolphin () may depend on the social structure dynamics. Nonetheless, the way in which these adaptations take place is still poorly understood. In the present study we applied photo-identification techniques to investigate the social structure of the common bottlenose dolphin population inhabiting the Gulf of Alghero (Sardinia, Italy), analysing data recorded from 2008 to 2019.
View Article and Find Full Text PDF