Publications by authors named "Fabio Ribeiro Pires"

The objective of this study was to determine the efficiency of the microbial rhizosphere () in the phytoremediation of sulfentrazone using quantification methods (CO2 evolution, microbial biomass carbon, and metabolic quotient) and identification of bacteria (PCR-DGGE technique). The experiment was conducted in a completely randomized design, in a 2x4 factorial scheme, with four replications. The treatments were composed of rhizospheric soil (cultivated with ) and non-rhizosphere soil (uncultivated soil); and four levels of contamination by sulfentrazone (0, 200, 400, and 800 g ha a.

View Article and Find Full Text PDF

Pesticide dependence is one of the main disadvantages of agriculture. Despite the advances in biological control and integrated management of plant pests and diseases in recent years, herbicides are still essential for weed control and constitute the main class of pesticides worldwide. Herbicide residues in water, soil, air, and non-target organisms are among the biggest agricultural and environmental sustainability obstacles.

View Article and Find Full Text PDF

The management of initial planting density can be a strategy to increase barium phytoextraction from soil, reducing the time required for soil decontamination. To delimit the ideal planting density for barium (Ba) phytoremediation using Typha domingensis, we conducted a 300-day experiment in an area accidentally contaminated with barite. Four initial planting densities were tested: 4, 8, 12, and 16 plantsm (D4, D8, D12, and D16 treatments, respectively).

View Article and Find Full Text PDF

Barite (BaSO) is a component of drilling fluids used in the oil and gas industry and may cause barium (Ba) contamination if it is spilled onto flooded soils. Under anoxic soil conditions and low redox potential, sulfate can be reduced to a more soluble form (sulfide), and Ba can be made available. To design a solution for such environmental issues, a field study was conducted in a Ba-contaminated flooded area in Brazil, in which we induced Ba phytoextraction from the management of the planting density of two intercropped macrophytes.

View Article and Find Full Text PDF

Symbiosis among herbicide-metabolising microorganisms and phytoremediation plants may be an efficient alternative to remediate sulfentrazone-contaminated soils. This work evaluated the bioremediation of sulfentrazone-contaminated soils by symbiosis between bacteria (Bradyrhizobium sp.) and jack bean (Canavalia ensiformis L.

View Article and Find Full Text PDF

This study evaluated remediation of the herbicide sulfentrazone in soils with three different mineralogies (kaolinite, hematite, and gibbsite) and three remediation sulfentrazone treatments (Canavalia ensiformis L., Crotalaria juncea L., and natural attenuation).

View Article and Find Full Text PDF

Macrophytes are widely used in water treatment and have potential for remediation of flooded soils. Many techniques have been proposed to increase the phytoextraction of metals by macrophytes, however, the knowledge of periods of maximum absorption and translocation is essential and is a gap in the management of phytoremediation. To evaluate the absorption and translocation of Ba over time by Eleocharis acutangula, a greenhouse experiment was conducted and the dry matter production of plants, Ba content in the roots and aerial parts, mass of Ba accumulated in plants, translocation factors and removal coefficients of Ba, and Ba content in two layers of the soil (0.

View Article and Find Full Text PDF

Aquatic macrophytes are potentially useful for phytoremediation on flooded areas. A field study in Brazil was conducted to evaluate Eleocharis acutangula (E), Cyperus papyrus (C) and Typha domingensis (T) in monocropping and intercropping, aiming to phytoremediate barium-polluted flooded soils. The treatments were: monocroppings (E, C and T); double intercroppings (EC, ET and CT); and triple intercropping (ECT).

View Article and Find Full Text PDF

In anoxic environmental conditions and with a drastic reduction of the redox potential, the barium sulphate used in petroleum drilling fluids becomes a hazard to the ecosystem. A field study was conducted in Brazil in an area with a history of accidental Barium (Ba) contamination to evaluate the role of frequent plant cutting on phytoremediation. The plant species Typha domingensis and Eleocharis acutangula, cultivated in a combined plantation, were subjected to four different cut frequencies: every 90 days (four cuts), 120 days (three cuts), 180 days (two cuts), or 360 days (one cut).

View Article and Find Full Text PDF

The use of barite (BaSO4) in drilling fluids for oil and gas activities makes barium a potential contaminant in case of spills onto flooded soils, where low redox conditions may increase barium sulfate solubility. In order to select plants able to remove barium in such scenarios, the following species were evaluated on barium phytoextraction capacity: Brachiaria arrecta, Cyperus papyrus, Eleocharis acutangula, E. interstincta, Nephrolepsis cf.

View Article and Find Full Text PDF

This study aimed to evaluate the herbicidal activity of picloram on the biomass of the remediation plants Eleusine coracana and Panicum maximum after cultivation in a soil contaminated with this herbicide. These species were grown in three soils, differentiated based on texture (clayish, middle, and sandy, with 460, 250, and 40 g kg(-1) of the clay, respectively), previously contaminated with picloram (0, 80, and 160 g ha(-1)). After 90 days, the plants were harvested and an extract was produced by maceration of leaves and stems of these plants.

View Article and Find Full Text PDF

Commonly used herbicides, such as sulfentrazone, pose the risk of soil contamination due to their persistence, bioaccumulation and toxicity. Phytoremediation by green manure species has been tested using biomarkers, but analytical data are now required to confirm the extraction of sulfentrazone from soil. Thus, the present work was carried out to analyze sulfentrazone residues in soil based on liquid chromatography with a comparison of these values to the sensitivity of the bioindicator Pennisetum glaucum.

View Article and Find Full Text PDF