Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewis analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides.
View Article and Find Full Text PDFData science is playing an increasingly important role in the design and analysis of engineered biology. This has been fueled by the development of high-throughput methods like massively parallel reporter assays, data-rich microscopy techniques, computational protein structure prediction and design, and the development of whole-cell models able to generate huge volumes of data. Although the ability to apply data-centric analyses in these contexts is appealing and increasingly simple to do, it comes with potential risks.
View Article and Find Full Text PDFFibroins' transition from liquid to solid is fundamental to spinning and underpins the impressive native properties of silk. Herein, we establish a fibroin heavy chain fold for the Silk-I polymorph, which could be relevant for other similar proteins, and explains mechanistically the liquid-to-solid transition of this silk, driven by pH reduction and flow stress. Combining spectroscopy and modelling we propose that the liquid Silk-I fibroin heavy chain (FibH) from the silkworm, Bombyx mori, adopts a newly reported β-solenoid structure.
View Article and Find Full Text PDFIndustrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact.
View Article and Find Full Text PDFMany aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task.
View Article and Find Full Text PDFThe biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location.
View Article and Find Full Text PDFMolecular systems with coincident cyclic and superhelical symmetry axes have considerable advantages for materials design as they can be readily lengthened or shortened by changing the length of the constituent monomers. Among proteins, alpha-helical coiled coils have such symmetric, extendable architectures, but are limited by the relatively fixed geometry and flexibility of the helical protomers. Here we describe a systematic approach to generating modular and rigid repeat protein oligomers with coincident C to C and superhelical symmetry axes that can be readily extended by repeat propagation.
View Article and Find Full Text PDFChiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals, yet their preparation often relies on low-efficiency multi-step synthesis. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported.
View Article and Find Full Text PDFElectron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective -methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate -adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids.
View Article and Find Full Text PDFElectron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids.
View Article and Find Full Text PDFEne-reductases from the Old Yellow Enzyme (OYE) superfamily are a well-known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron-withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals.
View Article and Find Full Text PDFPromiscuous activity of a glycosyltransferase was exploited to polymerise glucose from UDP-glucose via the generation of β-1,4-glycosidic linkages. The biocatalyst was incorporated into biocatalytic cascades and chemo-enzymatic strategies to synthesise cello-oligosaccharides with tailored functionalities on a scale suitable for employment in mass spectrometry-based assays. The resulting glycan structures enabled reporting of the activity and selectivity of celluloltic enzymes.
View Article and Find Full Text PDFThe lack of label-free high-throughput screening technologies presents a major bottleneck in the identification of active and selective biocatalysts, with the number of variants often exceeding the capacity of traditional analytical platforms to assess their activity in a practical time scale. Here, we show the application of direct infusion of biotransformations to the mass spectrometer (DiBT-MS) screening to a variety of enzymes, in different formats, achieving sample throughputs equivalent to ∼40 s per sample. The heat map output allows rapid selection of active enzymes within 96-well plates facilitating identification of industrially relevant biocatalysts.
View Article and Find Full Text PDFCurr Opin Struct Biol
June 2021
The modular nature of repeat proteins has inspired the design of regular and completely novel sequences and structures. Research in the past years has provided a broad set of design approaches and new repeat proteins that have found applications in molecular recognition, taking advantage of the natural ability of some of these families to bind proteins, peptides and nucleic acids. Here, we provide an overview on the recent trends in design of repeat proteins, particularly solenoid folds, and their applications.
View Article and Find Full Text PDFBimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, Shewanella oneidensis, under mild conditions.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2020
Molecular models have enabled understanding of biological structures and functions and allowed design of novel macro-molecules. Graphical user interfaces (GUIs) in molecular modeling are generally focused on atomic representations, but, especially for proteins, do not usually address designs of complex and large architectures, from nanometers to microns. Therefore, we have developed Elfin UI as a Blender add-on for the interactive design of large protein architectures with custom shapes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2020
Automated chemical oligosaccharide synthesis is an attractive concept that has been successfully applied to a large number of target structures, but requires excess quantities of suitably protected and activated building blocks. Herein we demonstrate the use of biocatalysis to supply such reagents for automated synthesis. By using the promiscuous NmLgtB-B β1-4 galactosyltransferase from Neisseria meningitidis we demonstrate fast and robust access to the LacNAc motif, common to many cell-surface glycans, starting from either lactose or sucrose as glycosyl donors.
View Article and Find Full Text PDFThe combination of biocatalysis and chemo-catalysis increasingly offers chemists access to more diverse chemical architectures. Here, we describe the combination of a toolbox of chiral-amine-producing biocatalysts with a Buchwald-Hartwig cross-coupling reaction, affording a variety of α-chiral aniline derivatives. The use of a surfactant allowed reactions to be performed sequentially in the same flask, preventing the palladium catalyst from being inhibited by the high concentrations of ammonia, salts, or buffers present in the aqueous media in most cases.
View Article and Find Full Text PDFFluorinated sugar-1-phosphates are of emerging importance as intermediates in the chemical and biocatalytic synthesis of modified oligosaccharides, as well as probes for chemical biology. Here we present a systematic study of the activity of a wide range of anomeric sugar kinases (galacto- and N-acetylhexosamine kinases) against a panel of fluorinated monosaccharides, leading to the first examples of polyfluorinated substrates accepted by this class of enzymes. We have discovered four new N-acetylhexosamine kinases with a different substrate scope, thus expanding the number of homologs available in this subclass of kinases.
View Article and Find Full Text PDFThe human cell surface trisaccharide motifs globotriose and P1 antigen play key roles in infections by pathogenic bacteria, which makes them important synthetic targets as antibacterial agents. Enzymatic strategies to install the terminal α1,4-galactosidic linkage are very attractive but have only been demonstrated for a limited set of analogues. Herein, a new bacterial α1,4 galactosyltransferase from N.
View Article and Find Full Text PDFChitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored.
View Article and Find Full Text PDFEne-reductases (EREDs) catalyze the reduction of electron-deficient C═C bonds. Herein, we report the first example of ERED-catalyzed net reduction of C═C bonds of enimines (α,β-unsaturated imines). Preliminary studies suggest their hydrolyzed ring-open ω-amino enones are the likely substrates for this step.
View Article and Find Full Text PDF