Mice navigate an odor plume with a complex spatiotemporal structure in the dark to find the source of odorants. This article describes a protocol to monitor behavior and record Ca transients in dorsal CA1 stratum pyramidale neurons in the hippocampus (dCA1) in mice navigating an odor plume in a 50 cm x 50 cm x 25 cm odor arena. An epifluorescence miniscope focused through a gradient-index (GRIN) lens imaged Ca transients in dCA1 neurons expressing the calcium sensor GCaMP6f in Thy1-GCaMP6f mice.
View Article and Find Full Text PDFUnlabelled: Mice navigate an odor plume with a complex spatiotemporal structure in the dark to find the source of odorants. This article describes a protocol to monitor behavior and record Ca transients in dorsal CA1 stratum pyramidale neurons in hippocampus (dCA1) in mice navigating an odor plume in a 50 cm x 50 cm x 25 cm odor arena. An epifluorescence miniscope focused through a GRIN lens imaged Ca transients in dCA1 neurons expressing the calcium sensor GCaMP6f in Thy1-GCaMP6f mice.
View Article and Find Full Text PDFAlcohol use is a leading risk factor for substantial health loss, disability, and death. Thus, there is a general interest in developing computational tools to classify electroencephalographic (EEG) signals in alcoholism, but there are a limited number of studies on convolutional neural network (CNN) classification of alcoholism using topographic EEG signals. We produced an original dataset recorded from Brazilian subjects performing a language recognition task.
View Article and Find Full Text PDFCalcium (Ca) is a second messenger assumed to control changes in synaptic strength in the form of both long-term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP)-induced Ca release. These Ca transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca, requiring stochastic single-particle methods when modeling them.
View Article and Find Full Text PDFThe cerebellum plays a crucial role in sensorimotor and associative learning. However, the contribution of molecular layer interneurons (MLIs) to these processes is not well understood. We used two-photon microscopy to study the role of ensembles of cerebellar MLIs in a go-no go task where mice obtain a sugar water reward if they lick a spout in the presence of the rewarded odorant and avoid a timeout when they refrain from licking for the unrewarded odorant.
View Article and Find Full Text PDFComputational modeling of diffusion and reaction of chemical species in a three-dimensional (3D) geometry is a fundamental method to understand the mechanisms of synaptic plasticity in dendritic spines. In this protocol, the detailed 3D structure of the dendrites and dendritic spines is modeled with meshes on the software Blender with CellBlender. The synaptic and extrasynaptic regions are defined on the mesh.
View Article and Find Full Text PDFMyelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted.
View Article and Find Full Text PDFMirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm.
View Article and Find Full Text PDFFrequently, a common chemical entity triggers opposite cellular processes, which implies that the components of signalling networks must detect signals not only through their chemical natures, but also through their dynamic properties. To gain insights on the mechanisms of discrimination of the dynamic properties of cellular signals, we developed a computational stochastic model and investigated how three calcium ion (Ca(2+))-dependent enzymes (adenylyl cyclase (AC), phosphodiesterase 1 (PDE1), and calcineurin (CaN)) differentially detect Ca(2+) transients in a hippocampal dendritic spine. The balance among AC, PDE1 and CaN might determine the occurrence of opposite Ca(2+)-induced forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD).
View Article and Find Full Text PDFThe guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition.
View Article and Find Full Text PDFThis work consists of a computational study of the electrical responses of three classes of granule cells of the olfactory bulb to synaptic activation in different dendritic locations. The constructed models were based on morphologically detailed compartmental reconstructions of three granule cell classes of the olfactory bulb with active dendrites described by Bhalla and Bower (1993, pp. 1948-1965) and dendritic spine distributions described by Woolf et al.
View Article and Find Full Text PDFOlfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs.
View Article and Find Full Text PDFDown syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment.
View Article and Find Full Text PDFNeural Syst Circuits
March 2011
Background: Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs.
View Article and Find Full Text PDFBackground: Studies with rodents suggest that acute ethanol exposure impairs information flow through the cerebellar cortex, in part, by increasing GABAergic input to granule cells. Experiments suggest that an increase in the excitability of specialized GABAergic interneurons that regulate granule cell activity (i.e.
View Article and Find Full Text PDFNeuropsychopharmacology
August 2010
Alcohol-induced alterations of cerebellar function cause motor coordination impairments that are responsible for millions of injuries and deaths worldwide. Cognitive deficits associated with alcoholism are also a consequence of cerebellar dysfunction. The mechanisms responsible for these effects of ethanol are poorly understood.
View Article and Find Full Text PDFThis work describes a biophysical model of the initial stages of vertebrate olfactory system containing structures representing the olfactory epithelium and bulb. Its main novelty is the introduction of gap junctions connecting neurons both in the epithelium and bulb, and of biologically detailed dendrodendritic synapses between granule and mitral cells in the bulb. The model was used to simulate the effect of an odor presentation on the neural activity pattern in the epithelium and bulb.
View Article and Find Full Text PDF