Extreme global warming can produce hydroclimate changes that remain poorly understood for sub-tropical latitudes. Late Palaeocene-early Eocene (LPEE; ~58-52 Ma) proto-Mediterranean zones of the western Tethys offer opportunities to assess hydroclimate responses to massive carbon cycle perturbations. Here, we reconstruct LPEE hydroclimate conditions of these regions and find that carbon cycle perturbations exerted controls on orbitally forced hydroclimate variability.
View Article and Find Full Text PDFAutonomous underwater vehicle (AUV) mapping of the western Rio Grande Rise (RGR), South Atlantic, and subsequent exploration and photography of horizontal lava flows exposed in near vertical, faulted escarpments, showed occurrences of red clays/weathered volcanic tops trapped between successive alkaline lava flows. These red clays indicate a hiatus in successive volcanic eruptions. Here, we report detailed mineralogical, geochemical, and rock magnetic characteristics of one such distinct red clay dredged from ~ 650 m water depth in the western RGR.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Constraining secular variation of the Earth's magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts.
View Article and Find Full Text PDFWe present the study of a composite, yet continuous sedimentary succession covering the time interval spanning 2.6-0.36 Ma in the intramontane basin of Anagni (central Italy) through a dedicated borecore, field surveys, and the review of previous data at the three palaeontological and archaeological sites of Colle Marino, Coste San Giacomo and Fontana Ranuccio.
View Article and Find Full Text PDFMuch of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories.
View Article and Find Full Text PDFThe Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city's original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city.
View Article and Find Full Text PDFKnowledge of the direct role humans have had in changing the landscape requires the perspective of historical and archaeological sources, as well as climatic and ecologic processes, when interpreting paleoecological records. People directly impact land at the local scale and land use decisions are strongly influenced by local sociopolitical priorities that change through time. A complete picture of the potential drivers of past environmental change must include a detailed and integrated analysis of evolving sociopolitical priorities, climatic change and ecological processes.
View Article and Find Full Text PDFWe present four new Ar/Ar ages of tephra layers from an aggradational succession (Valle Giulia Formation) near the mouth of the Tiber Valley in Rome that was deposited in response to sea-level rise during Marine Isotopic Stage (MIS) 13. These new ages, integrated with seven previously determined ages, provide the only extant independent, radioisotopic age constraint on glacial termination VI and on the duration of MIS 13 sea-level rise. The new geochronologic constraints suggest a long duration for the period of sea-level rise (533 ± 2 through 498 ± 2 ka) encompassing two consecutive positive peaks of the δO curve (substages 13.
View Article and Find Full Text PDFThrough a geomorphological study relying on statistically assessed classes of hilltop elevations, we reconstruct a suite of paleo-surfaces along the Tiber River Valley north of Rome that we identify as fluvial terraces formed by interplay between global sea-level fluctuations and regional upift. Using biostratigraphic constraints provided by marine through continental deposits of Santernian age, we recognize the oldest terrace in this area, corresponding to an early coastal plain of late Santernian-Emilian age. By assuming the simple chronological principle of a staircase geometry we correlate the sea-level highstands of MIS 21 through MIS 5 with the lowest eight paleo-surfaces.
View Article and Find Full Text PDFAbout 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing.
View Article and Find Full Text PDFThe Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ(18)O record to model relative sea-level changes.
View Article and Find Full Text PDFThe magnetic properties (first-order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei, a cultivated marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a 'magnetic fingerprint' for a specific magnetotactic bacterium. The use of this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediments.
View Article and Find Full Text PDF