We propose a novel method alternative to the classical Dynamic Light Scattering (DLS) technique for performing particle sizing on diluted dispersions of nanosized particles. Differently from DLS, which works by determining the correlation function of the intensity scattered by the sample, our method does not require the use of a correlator because it exploits the behavior of the variance (VAR) of the scattered signal as a function of the sampling time Δt. By using a wide range of sampling times Δtmin ≪ τc ≪ Δtmax, it is possible to recover the correlation time τc of the scattered field and, in turn (by using the Stokes-Einstein relation), the hydrodynamic diameter of the particles.
View Article and Find Full Text PDFLight scattering and turbidimetry techniques are classical tools for characterizing the dynamics and structure of single nanoparticles or nanostructured networks. They work by analyzing, as a function of time (Dynamic Light Scattering, DLS) or angles (Static Light Scattering, SLS), the light scattered by a sample, or measuring, as a function of the wavelength, the intensity scattered over the entire solid angle when the sample is illuminated with white light (Multi Wavelength Turbidimetry, MWT). Light scattering methods probe different length scales, in the ranges of ~5−500 nm (DLS), or ~0.
View Article and Find Full Text PDFOver the recent years, a typical implementation of diffuse correlation spectroscopy (DCS) instrumentation has been adapted widely. However, there are no detailed and accepted recipes for designing such instrumentation to meet pre-defined signal-to-noise ratio (SNR) and precision targets. These require specific attention due to the subtleties of the DCS signals.
View Article and Find Full Text PDFBackground: Disease awareness is a challenge in the management of chronic obstructive pulmonary disease (COPD).
Objectives: The aim of this analysis was to explore the association between COPD optimal and suboptimal awareness, clinical parameters, and the following patient-reported outcomes: modified Medical Research Council (mMRC), Treatment Satisfaction Questionnaire (TSQM-9), COPD Assessment Test (CAT), Morisky Medication-Taking Adherence Scale (MMAS-4), and Brief Illness Perception Questionnaire (B-IPQ).
Methods: This post hoc analysis of the SAT study included all enrolled patients for whom awareness (Disease Awareness in COPD Questionnaire - DACQ) was assessed at baseline and 12 months.
An increasingly important issue in nanoscience and nanotechnology is the accurate determination of nanoparticle sizing. Wide angle X-ray total scattering (WAXTS) data are frequently used to retrieve the Particle Size Distributions (PSDs) of nanocrystals of highly technological relevance; however, the PSD shape typically relies on an a-priori assumption. Here, we propose a modified version of the classical iterative Lucy-Richardson (LR) algorithm, which is simple, fast and highly reliable against noise, and demonstrate that the inversion of WAXTS data can be profitably used for recovering accurate PSD regardless of its shape.
View Article and Find Full Text PDFThe occurrence of an amorphous calcium phosphate layer covering the crystalline apatite core has been suggested to be an intrinsic feature of both bone mineral and synthetic biomimetic analogs. However, an exahustive quantitative picture of the amorphous-crystalline relationship in these materials is still missing. Here, we present a multiple scale modelling that combines small-angle X-ray scattering (SAXS) and synchrotron wide-angle X-ray total scattering (WAXTS) analyses to investigate the amorphous-crystalline spatial interplay in bone sample and biomimetic carbonated nano-apatites.
View Article and Find Full Text PDFCharacterization of functional nanocrystalline materials in terms of quantitative determination of size, size dispersion, type, and extension of exposed facets still remains a challenging task. This is particularly the case of anisotropically shaped nanocrystals (NCs) like the TiO photocatalysts. Here, commercially available P25 and P90 titania nanopowders have been characterized by wide-angle X-ray total scattering techniques.
View Article and Find Full Text PDFBackground: Gender differences in asthma perception and control have been reported. The PROXIMA observational study assessed these outcomes in a cohort of Italian severe allergic asthma (SAA) patients. This post hoc analysis of the PROXIMA results was aimed at assessing gender differences in SAA in a real-world setting, focusing on disease perception and impact on quality of life (QoL).
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
July 2019
Background: Patient awareness of COPD refers to knowledge and acceptance of the disease and its treatment. Although it is relevant to management and outcomes, the disease awareness of patients is poorly investigated, and no validated questionnaires are currently available. We aimed to develop the novel Disease Awareness in COPD Questionnaire (DACQ), which was validated in relation to demographic and clinical features, in patients participating in the SATisfaction and Adherence to COPD Treatment (SAT) study.
View Article and Find Full Text PDFWe revisited the classical Schätzel formulas (K. Schätzel, Quantum Optics2, 2871990) of the variance and covariance matrix associated to the normalized auto-correlation function in a Dynamic Light Scattering experiment when the sample is characterized by a single exponential decay function. Although thoroughly discussed by Schätzel who also outlined a correcting procedure, such formulas do not include explicitly the effects of triangular averaging that arise when the sampling time Δt is comparable or larger than the correlation time τc.
View Article and Find Full Text PDFIn this work, mixed alkali metaphosphate glasses based on K-Na, Rb-Na, Rb-Li, Cs-Na and Cs-Li combinations were studied by differential scanning calorimetry (DSC), complex impedance spectroscopy, and Raman spectroscopy. DSC analyses show that both the glass transition (T) and melting temperatures (T) exhibit a clear mixed-ion effect. The ionic conductivity shows a strong mixed-ion effect and decreases by more than six orders of magnitude at room temperature for Rb-Na or Cs-Li alkali pairs.
View Article and Find Full Text PDFA 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ∼10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times.
View Article and Find Full Text PDFBackground: Mass spectrometry (MS) is producing high volumes of data supporting oncological sciences, especially for translational research. Most of related elaborations can be carried out by combining existing tools at different levels, but little is currently available for the automation of the fundamental steps. For the analysis of MALDI/TOF spectra, a number of pre-processing steps are required, including joining of isotopic abundances for a given molecular species, normalization of signals against an internal standard, background noise removal, averaging multiple spectra from the same sample, and aligning spectra from different samples.
View Article and Find Full Text PDFWe present a new hardware simulator (HS) for characterization, testing and benchmarking of digital correlators used in various optical correlation spectroscopy experiments where the photon statistics is Gaussian and the corresponding time correlation function can have any arbitrary shape. Starting from the HS developed in [Rev. Sci.
View Article and Find Full Text PDFThe formation of a fibrin network following fibrinogen enzymatic activation is the central event in blood coagulation and has important biomedical and biotechnological implications. A non-covalent polymerization reaction between macromolecular monomers, it consists basically of two complementary processes: elongation/branching generates an interconnected 3D scaffold of relatively thin fibrils, and cooperative lateral aggregation thickens them more than 10-fold. We have studied the early stages up to the gel point by fast fibrinogen:enzyme mixing experiments using simultaneous small-angle X-ray scattering and wide-angle, multi-angle light scattering detection.
View Article and Find Full Text PDFUnlabelled: Gross cystic disease (GCDB) is a breast benign condition predisposing to breast cancer. Cryopreserved sera from GCDB patients, some of whom later developed a cancer (cases), were studied to identify potential risk markers. A MALDI-TOF mass spectrometry analysis found several complement C3f fragments having a significant increased abundance in cases compared to controls.
View Article and Find Full Text PDFThe average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks.
View Article and Find Full Text PDFFibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3-4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension D(m) = 1), for the overall system 1
The features of scattered and transmitted light by dilute suspensions of transparent submicron particles are investigated both in the spectral and in the perceived colorimetric domains, as a function of effective particle diameter D, particle-host refractive-index mismatch m, and scattering angle θ. Our results show that the wavelength λ-dependence of the scattering and extinction cross sections remains quite similar well beyond the Rayleigh regime up to particle sizes of a few hundreds nm, but only for specific scattering angles that depend on D and m, and tend to 90° on approaching the Rayleigh regime. Close to this limit (D/λ<<1), a simple criterion that relates the perceived scattering color at θ=90° and the ratio of the sample extinction coefficients at two properly selected wavelengths is demonstrated.
View Article and Find Full Text PDFSilver and gold films with thicknesses in the range of 120-450 nm were evaporated onto glass substrates. A sequence of slits with widths varying between 70 and 270 nm was milled in the films using a focused gallium ion beam. We have undertaken high-resolution measurements of the optical transmission through the single slits with 488.
View Article and Find Full Text PDFINAMA, G., et al.: Far-Field R Wave Oversensing in Dual Chamber Pacemakers Designed for Atrial Arrhythmia Management: Effect of Pacing Site and Lead Tip to Ring Distance.
View Article and Find Full Text PDF