The mother plant plays an important dynamic role in the control of dormancy of her progeny seed in response to environmental signals. In order to further understand the mechanisms by which this dormancy control takes place in Arabidopsis (), we conducted a forward genetic screen to isolate mutants that fail to enter dormancy in response to variation in temperature during seed set. We show that, for the first of these mutants, designated , the maternal allele is required for entry into strongly dormant states and that mutants show seed phenotypes shown previously to be associated with the loss of suberin in the seed.
View Article and Find Full Text PDFEnvironmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy.
View Article and Find Full Text PDF