MicroRNAs (miRNAs) are small, noncoding RNAs that mediate post-transcriptional downregulation of specific target genes. These transcripts are the products of a two-step processing pathway; primary miRNAs (pri-miRNAs) are processed by Drosha into individual precursor miRNA (pre-miRNA) hairpins, which are subsequently processed by Dicer into mature miRNAs. Single nucleotide polymorphisms (SNPs) that occur in pri-miRNAs, pre-miRNAs and mature miRNAs have been shown to affect the processing of specific target genes by modulating Drosha and Dicer processing or interactions with RNA binding proteins (RBPs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Rod photoreceptors are composed of a soma and an inner segment (IS) connected to an outer segment (OS) by a thin cilium. OSs are composed of a stack of ∼800 lipid discs surrounded by the plasma membrane where phototransduction takes place. Intracellular calcium plays a major role in phototransduction and is more concentrated in the discs, where it can be incorporated and released.
View Article and Find Full Text PDFPhotoreceptors are specialized cells devoted to the transduction of the incoming visual signals. Rods are able also to shed from their tip old disks and to synthesize at the base of the outer segment (OS) new disks. By combining electrophysiology, optical tweezers (OTs), and biochemistry, we investigate mechanosensitivity in the rods of Xenopus laevis, and we show that 1) mechanosensitive channels (MSCs), transient receptor potential canonical 1 (TRPC1), and Piezo1 are present in rod inner segments (ISs); 2) mechanical stimulation-of the order of 10 pN-applied briefly to either the OS or IS evokes calcium transients; 3) inhibition of MSCs decreases the duration of photoresponses to bright flashes; 4) bright flashes of light induce a rapid shortening of the OS; and 5) the genes encoding the TRPC family have an ancient association with the genes encoding families of protein involved in phototransduction.
View Article and Find Full Text PDFFront Cell Neurosci
June 2018
[This corrects the article on p. 130 in vol. 12, PMID: 29867363.
View Article and Find Full Text PDFFront Cell Neurosci
May 2018
Mechanical stresses are always present in the cellular environment and mechanotransduction occurs in all cells. Although many experimental approaches have been developed to investigate mechanotransduction, the physical properties of the mechanical stimulus have yet to be accurately characterized. Here, we propose a mechanical stimulation method employing an oscillatory optical trap to apply piconewton forces perpendicularly to the cell membrane, for short instants.
View Article and Find Full Text PDF