Publications by authors named "Fabio Corsolini"

Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant of unknown significance of the gene (p.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a genome instability condition that drives somatic mosaicism in up to 25% of all patients, a phenomenon now acknowledged as a good prognostic factor. Herein, we describe the case of P1, a FA proband carrying a splicing variant, molecularly compensated by a insertion. Targeted next-generation sequencing on P1's peripheral blood DNA detected the known c.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and aplastic anemia. So far, 23 genes are involved in this pathology, and their mutations lead to a defect in DNA repair. In recent years, it has been observed that FA cells also display mitochondrial metabolism defects, causing an accumulation of intracellular lipids and oxidative damage.

View Article and Find Full Text PDF

Background: Evans syndrome (ES) is a rare disorder classically defined as the simultaneous or sequential presence of autoimmune haemolytic anaemia and immune thrombocytopenia, but it has also been described as the presence of at least two autoimmune cytopenias. Recent reports have shown that ES is often a manifestation of an underlying inborn error of immunity (IEI) that can benefit from specific treatments.

Aims: The aim of this study is to investigate the clinical and immunological characteristics and the underlying genetic background of a single-centre cohort of patients with ES.

View Article and Find Full Text PDF

Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination.

View Article and Find Full Text PDF

Autoimmune lymphoproliferative syndrome (ALPS) is a congenital disorder that results in an apoptosis impairment of lymphocytes, leading to chronic lymphoproliferation and autoimmunity, mainly autoimmune cytopenias. FAS gene defects are often responsible for the disease, the phenotype of which can vary from asymptomatic/mild forms to severe disease. More rarely, defects are associated to  other genes involved in apoptosis pathway, such as CASP10.

View Article and Find Full Text PDF

Background: Warsaw Breakage Syndrome (WABS) is an ultra rare cohesinopathy caused by biallelic mutation of DDX11 gene. It is clinically characterized by pre and postnatal growth delay, microcephaly, hearing loss with cochlear hypoplasia, skin color abnormalities, and dysmorphisms.

Methods: Mutational screening and functional analyses (protein expression and 3D-modeling) were performed in order to investigate the presence and pathogenicity of DDX11 variant identified in our patients.

View Article and Find Full Text PDF

Fanconi anemia is a rare disease characterized by congenital malformations, aplastic anemia, and predisposition to cancer. Despite the consolidated role of the Fanconi anemia proteins in DNA repair, their involvement in mitochondrial function is emerging. The purpose of this work was to assess whether the mitochondrial phenotype, independent of genomic integrity, could correlate with patient phenotype.

View Article and Find Full Text PDF

The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct "edited" iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients.

View Article and Find Full Text PDF

The chromosomal region, in which the GBA gene is located, is structurally subject to misalignments, reciprocal and nonreciprocal homologous recombination events, leading to structural defects such as deletions, duplications and gene-pseudogene complex rearrangements causing Gaucher Disease (GD). Interestingly deletions and duplications, belonging to the heterogeneous group of structural defects collectively termed Copy Number Variations (CNVs), together with gene-pseudogene complex rearrangements represent the main cause of pitfalls in GD mutational analysis. In the present study, we set up and validate a Multiplex Ligation-dependent Probe Amplification (MLPA)-based approach to simultaneously investigate the potential occurrence of CNVs and complex rearrangements in 8 unrelated GD patients who had still not-well-characterized or uncharacterized alleles.

View Article and Find Full Text PDF

Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes.

View Article and Find Full Text PDF

We analyzed 97 Fanconi anemia patients from a clinic/biological database for genotype, somatic, and hematologic phenotype, adverse hematological events, solid tumors, and treatment. Seventy-two patients belonged to complementation group A. Eighty percent of patients presented with mild/moderate somatic phenotype and most with cytopenia.

View Article and Find Full Text PDF

Bone marrow failure in Fanconi anemia (FA) has been linked in part to overproduction of inflammatory cytokines, to which FA stem and progenitor cells are hypersensitive. In cell lines and murine models p38 mitogen-activated protein kinase (MAPK)-dependent tumor necrosis factor α (TNF-α) overexpression can be induced by the Toll-like receptors (TLRs) 4 and 7/8 ligands Lipopolysaccharide (LPS) and R848. Ex vivo exposure of FA stem cells to TNF-α suppresses their replication and selects preleukemic clones.

View Article and Find Full Text PDF

Objectives: Gaucher disease (GD) diagnosis relies on the demonstration of deficient β-D-glucosidase (GBA) activity in cellular homogenates. Diagnosis process, however, can be delayed as (i) some GD symptoms are non-specific; and (ii) diagnostic tests are performed in specialized laboratories. These difficulties negatively impact on timely access of patients to therapy.

View Article and Find Full Text PDF

Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a recessive DNA repair disease characterized by a high predisposition to developing neoplasms. DNA tumor polyomavirus simian virus 40 (SV40) transforms FA fibroblasts at high efficiency suggesting that FA patients could be highly susceptible to SV40 infection. To test this hypothesis, the large tumor (LT) antigen of SV40, BKV, JCV and Merkel Cell (MC) polyomaviruses were tested in blood samples from 89 FA patients and from 82 of their parents.

View Article and Find Full Text PDF

An exonic missense mutation, c.436C>G, in the PLP1 gene of a patient affected by the hypomyelinating leukodystrophy, Pelizaeus-Merzbacher disease, has previously been found to be responsible for the alteration of the canonical alternative splicing profile of the PLP1 gene leading to the loss of the longer PLP isoform. Here we show that the presence of the c.

View Article and Find Full Text PDF

Proteolipid protein 1 (PLP1) gene-related disorders due to mutations in the PLP1 include a wide spectrum of X-linked disorders ranging from severe connatal Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families.

View Article and Find Full Text PDF

In this study, the immunological status of 61 patients with Fanconi anemia (FA) with advanced marrow failure before hematopoietic stem cell transplantation was analyzed by assessing the phenotype of peripheral blood lymphocytes, serum immunoglobulin (Ig) levels, and inflammatory cytokines. In patients with FA, total absolute lymphocytes (P < 0.0001), B cells (P < 0.

View Article and Find Full Text PDF

Background: The breadth of the clinical spectrum underlying Pelizaeus-Merzbacher disease and spastic paraplegia type 2 is due to the extensive allelic heterogeneity in the X-linked PLP1 gene encoding myelin proteolipid protein (PLP). PLP1 mutations range from gene duplications of variable size found in 60-70% of patients to intragenic lesions present in 15-20% of patients.

Methods: Forty-eight male patients from 38 unrelated families with a PLP1-related disorder were studied.

View Article and Find Full Text PDF

The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.

View Article and Find Full Text PDF

Sequence analysis of the X-linked iduronate-2-sulfatase (IDS) gene in two Hunter syndrome patients revealed a lack of concordance between IDS genomic DNA and cDNA. These individuals were found to be hemizygous respectively for a nonsense mutation [c.22C>T;p.

View Article and Find Full Text PDF

Mutational analysis of the GNPTAB gene was performed in 46 apparently unrelated patients with mucolipidosis IIalpha/beta or IIIalpha/beta, characterized by the mistargeting of multiple lysosomal enzymes as a consequence of a UDP-GlcNAc-1-phosphotransferase defect. The GNPTAB mutational spectrum comprised 25 distinct mutant alleles, 22 of which were novel, including 3 nonsense mutations (p.Q314X, p.

View Article and Find Full Text PDF