Publications by authors named "Fabio Cinti"

The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential.

View Article and Find Full Text PDF

Discovering novel emergent behavior in quantum many-body systems is a main objective of contemporary research. In this Letter, we explore the effects on phases and phase transitions of the proximity to a Ruelle-Fisher instability, marking the transition to a collapsed state. To accomplish this, we study by quantum Monte Carlo simulations a two-dimensional system of soft-core bosons interacting through an isotropic finite-ranged attraction, with a parameter η describing its strength.

View Article and Find Full Text PDF

Confinement can have a considerable effect on the behavior of particle systems and is therefore an effective way to discover new phenomena. A notable example is a system of identical bosons at low temperature under an external field mimicking an isotropic bubble trap, which constrains the particles to a portion of space close to a spherical surface. Using path integral Monte Carlo simulations, we examine the spatial structure and superfluid fraction in two emblematic cases.

View Article and Find Full Text PDF

We study the low-temperature phases of interacting bosons on a two-dimensional quasicrystalline lattice. By means of numerically exact path integral Monte Carlo simulations, we show that for sufficiently weak interactions the system is a homogeneous Bose-Einstein condensate that develops density modulations for increasing filling factor. The simultaneous occurrence of sizeable condensate fraction and density modulation can be interpreted as the analogous, in a quasicrystalline lattice, of supersolid phases occurring in conventional periodic lattices.

View Article and Find Full Text PDF

In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.

View Article and Find Full Text PDF

We systematically investigate the zero temperature phase diagram of bosons interacting via dipolar interactions in three dimensions in free space via path integral Monte Carlo simulations with a few hundreds of particles and periodic boundary conditions based on the worm algorithm. Upon increasing the strength of the dipolar interaction and at sufficiently high densities we find a wide region where filaments are stabilized along the direction of the external field. Most interestingly by computing the superfluid fraction we conclude that the superfluidity is anisotropic and is greatly suppressed along the orthogonal plane.

View Article and Find Full Text PDF

At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering.

View Article and Find Full Text PDF

We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior.

View Article and Find Full Text PDF