The simultaneous breaking of time-reversal and inversion symmetry, in connection to superconductivity, leads to transport properties with disrupting scientific and technological potential. Indeed, the anomalous Josephson effect and the superconducting-diode effect hold promises to enlarge the technological applications of superconductors and nanostructures in general. In this context, the system we theoretically analyze is a Josephson junction (JJ) with coupled reconstructed topological channels as a link; such channels are at the edges of a two-dimensional topological insulator (2DTI).
View Article and Find Full Text PDFQuantum thermal machines can perform useful tasks, such as delivering power, cooling, or heating. In this work, we consider hybrid thermal machines, that can execute more than one task simultaneously. We characterize and find optimal working conditions for a three-terminal quantum thermal machine, where the working medium is a quantum harmonic oscillator, coupled to three heat baths, with two of the couplings driven periodically in time.
View Article and Find Full Text PDFNpj Ment Health Res
November 2022
Age is the main risk factor of neurodegenerative diseases, but environmental exposure and lifestyle are important candidates for understanding their etiology. Accumulating evidence suggests that “, described as the totality of human environmental exposures from conception onwards, represents major modifiable risk factors for most neurodegenerative diseases and dementia. In this commentary, we discuss and provide our opinion about the urgent need for a constructive dialog between political stakeholders, researchers, and physicians to implement specific strategies to counteract and reduce the onset of neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Retracted articles represent research withdrawn from the existing body of literature after publication. Research articles may be retracted for several reasons ranging from honest errors to intentional misconduct. They should not be used as reliable sources, and it is unclear why they are cited occasionally by other articles.
View Article and Find Full Text PDFIntroduction: Blood and cerebrospinal fluid represent emerging candidate fluids for biomarker identification in Parkinson's disease (PD).
Methods: We studied 8 individuals carrying the E46K-SNCA mutation (3 PD dementia (PDD), 1 tremor-dominant PD, 2 young rigid-akinetic PD and 2 asymptomatic) and 8 age- and sex-matched healthy controls. We quantified the levels of total alpha-synuclein (a-syn), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), Tau and ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with SiMoA (Quanterix) in cerebrospinal fluid (CSF) of mutation carriers and in serum of all participants.
J Anesth Analg Crit Care
November 2021
Background: Since late 2019, a severe acute respiratory syndrome, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread with overwhelming speed causing over 214 million confirmed infections and more than 4.5 million deaths worldwide. In this framework, Italy had the second highest number of SARS-CoV-2 infections worldwide, and the largest number of deaths.
View Article and Find Full Text PDFThe principal hallmark of Parkinson's disease (PD) is the selective neurodegeneration of dopaminergic neurones. Mounting evidence suggests that astrocytes may contribute to dopaminergic neurodegeneration through decreased homoeostatic support and deficient neuroprotection. In this study, we generated induced pluripotent stem cells (iPSC)-derived astrocytes from PD patients with LRRK2 mutation and healthy donors of the similar age.
View Article and Find Full Text PDFWhen a parameter quench is performed in an isolated quantum system with a complete set of constants of motion, its out of equilibrium dynamics is considered to be well captured by the Generalized Gibbs Ensemble (GGE), characterized by a set {λα} of coefficients related to the constants of motion. We determine the most elementary GGE deviation from the equilibrium distribution that leads to detectable effects. By quenching a suitable local attractive potential in a one-dimensional electron system, the resulting GGE differs from equilibrium by only one single λα, corresponding to the emergence of an only partially occupied bound state lying below a fully occupied continuum of states.
View Article and Find Full Text PDFAdenosine A receptors (AARs) are promising imaging biomarkers and targets for the treatment of stroke. Nevertheless, the role of AARs on ischemic damage and its subsequent neuroinflammatory response has been scarcely explored so far. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated by positron emission tomography (PET) with [F]CPFPX and immunohistochemistry (IHC).
View Article and Find Full Text PDFParkinson's disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts.
View Article and Find Full Text PDFpositron emission tomography of neuroinflammation has mainly focused on the evaluation of glial cell activation using radiolabeled ligands. However, the non-invasive imaging of neuroinflammatory cell proliferation has been scarcely evaluated so far. and assessment of gliogenesis after transient middle cerebral artery occlusion (MCAO) in rats was carried out using PET imaging with the marker of cell proliferation 3'-Deoxy-3'-[18F] fluorothymidine ([F]FLT), magnetic resonance imaging (MRI) and fluorescence immunohistochemistry.
View Article and Find Full Text PDFUnderstanding the properties of far-from-equilibrium quantum systems is becoming a major challenge of both fundamental and applied physics. For instance, the lack of thermalization in integrable and (many body) localized systems provides new insights in the understanding of the relaxation dynamics of quantum phases. On a more applicative side, the possibility of exploiting the properties of far-from-equilibrium states, for example in pump-probe experiments, opens unprecedented scenarios.
View Article and Find Full Text PDFWe experimentally demonstrate 50 Gb/s transmission below an uncorrected bit error rate (BER) of 10 in the C band over a transmission reach that extends from 0 to 20 km using combined amplitude and phase shift (CAPS) codes. The CAPS signal, which is not required to be specifically dispersion compensated for each reach within the 20 km operating range, is amenable for simple direct detection using a single photodetector without any subsequent digital signal processing (DSP). Hence, the presented solution constitutes a potentially attractive low cost solution for mobile Xhaul applications employing single mode fiber interconnects with reaches extending to 20 km.
View Article and Find Full Text PDFAmyloid beta- (A-) mediated ROS overproduction disrupts intraneuronal redox balance and exacerbates mitochondrial dysfunction which leads to neuronal injury. Polyphenols have been investigated as therapeutic agents that promote neuroprotective effects in experimental models of brain injury and neurodegenerative diseases. The aim of this study was to identify the neuroprotective effects of morin and mangiferin against A oligomers in cultured cortical neurons and organotypic slices as well as their mechanisms of action.
View Article and Find Full Text PDFSynucleinopathies are a group of diseases characterized by the presence of intracellular protein aggregates containing α-synuclein (α-syn). While α-syn aggregates have been shown to induce multimodal cellular dysfunctions, uptake and transport mechanisms remain unclear. Using high-content imaging on cortical neurons and astrocytes, we here define the kinetics of neuronal and astrocytic abnormalities induced by human-derived α-syn aggregates grounding the use of such system to identify and test putative therapeutic compounds.
View Article and Find Full Text PDFWe previously demonstrated that activation of ATP P2X receptors during oxygen and glucose deprivation inhibits neuroblast migration and in vitro neurogenesis from the subventricular zone (SVZ). Here, we have studied the effects of adenosine, the natural end-product of ATP hydrolysis, in modulating neurogenesis and gliogenesis from the SVZ. We provide immunochemical, molecular and pharmacological evidence that adenosine via A1 receptors reduces neuronal differentiation of neurosphere cultures generated from postnatal SVZ.
View Article and Find Full Text PDFNeural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models.
View Article and Find Full Text PDFExtracellular ATP, related nucleotides and adenosine are among the earliest signaling molecules, operating in virtually all tissues and cells. Through their specific receptors, namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide array of physiological effects ranging from neurotransmission and muscle contraction to endocrine secretion, vasodilation, immune response, and fertility. The purinergic system also participates in the proliferation and differentiation of stem cells from different niches.
View Article and Find Full Text PDFThe role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one.
View Article and Find Full Text PDFMultipotent cells from the juvenile subventricular zone (SVZ) possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes, or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation.
View Article and Find Full Text PDFWe explore the effect of trigonal warping and of elastic deformations on the electronic spectrum of bilayer graphene devices, on their ballistic conductance as well as on the shot noise. Uniaxial strain distorts the lattice creating a uniform fictitious gauge field in the electronic Dirac Hamiltonian which ultimately causes a dramatic reconstruction in the trigonally warped electronic spectrum, inducing topological transitions in the Fermi surface. In this paper we present results of ballistic transport in bilayer graphene in the absence and presence of strain, with particular focus on noise and the Fano factor F.
View Article and Find Full Text PDF