The Pr1 family of serine endopeptidases plays an important role in pathogenicity and virulence of entomopathogens such as Metarhizium anisopliae (Ascomycota: Hypocreales). These virulence factors allow for the penetration of the host cuticle, a vital step in the infective process of this fungus, which possesses 11 Pr1 isoforms (Pr1A through Pr1K). The family is divided into two classes with Class II (proteinase K-like) comprising 10 isoforms further split into three subfamilies.
View Article and Find Full Text PDFCell walls are involved in manifold aspects of fungi maintenance. For several fungi, chitin synthesis, degradation and recycling are essential processes required for cell wall biogenesis; notably, the activity of β-N-acetylglucosaminidases (NAGases) must be present for chitin utilization. For entomopathogenic fungi, such as Metarhizium anisopliae, chitin degradation is also used to breach the host cuticle during infection.
View Article and Find Full Text PDFBackground: The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge.
View Article and Find Full Text PDFBackground: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.
View Article and Find Full Text PDFUreases are nickel-dependent enzymes which catalyze the hydrolysis of urea to ammonia and carbamate. Despite the apparent wealth of data on ureases, many crucial aspects regarding these enzymes are still unknown, or constitute matter for ongoing debates. One of these is most certainly their structural organization: ureases from plants and fungi have a single unit, while bacterial and archaean ones have three-chained structures.
View Article and Find Full Text PDF