Publications by authors named "Fabio C De Leo"

The Ocean Networks Canada (ONC) cabled video-observatory at the Barkley Canyon Node (British Columbia, Canada) was recently the site of a Fish Acoustics and Attraction Experiment (FAAE), from May 21, 2022 to July 16, 2023, combining observations from High-Definition (HD) video, acoustic imaging sonar, and underwater sounds at a depth of 645 m, to examine the effects of light and bait on deep-sea fish and invertebrate behaviors. The unexpected presence of at least eight (six recurrent and two temporary) sub-adult male northern elephant seals (Mirounga angustirostris) was reported in 113 and 210 recordings out of 9737 HD and 2805 sonar videos at the site, respectively. Elephant seals were found at the site during seven distinct periods between June 22, 2022 and May 19, 2023.

View Article and Find Full Text PDF

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence.

View Article and Find Full Text PDF

The peripheral areas of deep-sea hydrothermal vents are often inhabited by an assemblage of animals distinct to those living close to vent chimneys. For many such taxa, it is considered that peak abundances in the vent periphery relate to the availability of hard substrate as well as the increased concentrations of organic matter generated at vents, compared to background areas. However, the peripheries of vents are less well-studied than the assemblages of vent-endemic taxa, and the mechanisms through which peripheral fauna may benefit from vent environments are generally unknown.

View Article and Find Full Text PDF

Sponges perceive and respond to a range of stimuli. How they do this is still difficult to pin down despite now having transcriptomes and genomes of an array of species. Here we evaluate the current understanding of sponge behavior and present new observations on sponge activity in situ.

View Article and Find Full Text PDF

Increasing interest in the acquisition of biotic and abiotic resources from within the deep sea (e.g., fisheries, oil-gas extraction, and mining) urgently imposes the development of novel monitoring technologies, beyond the traditional vessel-assisted, time-consuming, high-cost sampling surveys.

View Article and Find Full Text PDF

Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods.

View Article and Find Full Text PDF

Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity.

View Article and Find Full Text PDF

The abyssal seafloor covers more than 50% of the Earth and is postulated to be both a reservoir of biodiversity and a source of important ecosystem services. We show that ecosystem structure and function in the abyss are strongly modulated by the quantity and quality of detrital food material sinking from the surface ocean. Climate change and human activities (e.

View Article and Find Full Text PDF