We demonstrate experimentally that frequency resolved optical switching (FROSt) can be used to characterize ultra-broadband pulses at high repetition rates up to 500 kHz. Specifically, we present the complete temporal characterization of an optical parametric amplifier (OPA), from the supercontinuum (SC) to the second stage of amplification. Simultaneous characterization of co-propagating signal and idler pulses enables retrieval of their group delay, as well as their temporal phase and intensity.
View Article and Find Full Text PDFMost resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the scattering plane in underdoped BiSrCaCuO.
View Article and Find Full Text PDFWe report on an optical architecture delivering sub-120 femtosecond laser pulses of 20 µJ tunable from 5.5 µm to 13 µm in the mid-infrared range (mid-IR). The system is based on a dual-band frequency domain optical parametric amplifier (FOPA) optically pumped by a Ti:Sapphire laser and amplifying 2 synchronized femtosecond pulses each with a widely tunable wavelength around 1.
View Article and Find Full Text PDFCuprate high-T superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency.
View Article and Find Full Text PDFMany puzzling properties of high-critical temperature () superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate.
View Article and Find Full Text PDFUnderstanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity.
View Article and Find Full Text PDF