The pervasive presence of artificial intelligence (AI) in our everyday life has nourished the pursuit of explainable AI. Since the dawn of AI, logic has been widely used to express, in a human-friendly fashion, the internal process that led an (intelligent) system to deliver a specific output. In this paper, we take a step forward in this direction by introducing a novel family of kernels, called Propositional kernels, that construct feature spaces that are easy to interpret.
View Article and Find Full Text PDFBackground: Named Entity Recognition is a common task in Natural Language Processing applications, whose purpose is to recognize named entities in textual documents. Several systems exist to solve this task in the biomedical domain, based on Natural Language Processing techniques and Machine Learning algorithms. A crucial step of these applications is the choice of the representation which describes data.
View Article and Find Full Text PDFMany natural substances and drugs are radical scavengers that prevent the oxidative damage to fundamental cell components. This process may occur via different mechanisms, among which, one of the most important, is hydrogen atom transfer. The feasibility of this process can be assessed in silico using quantum mechanics to compute ΔG .
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2018
When dealing with kernel methods, one has to decide which kernel and which values for the hyperparameters to use. Resampling techniques can address this issue but these procedures are time-consuming. This problem is particularly challenging when dealing with structured data, in particular with graphs, since several kernels for graph data have been proposed in literature, but no clear relationship among them in terms of learning properties is defined.
View Article and Find Full Text PDFKernel based classifiers, such as SVM, are considered state-of-the-art algorithms and are widely used on many classification tasks. However, this kind of methods are hardly interpretable and for this reason they are often considered as models. In this paper, we propose a new family of Boolean kernels for categorical data where features correspond to propositional formulas applied to the input variables.
View Article and Find Full Text PDFBackground: The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems.
View Article and Find Full Text PDFTree kernels proposed in the literature rarely use information about the relative location of the substructures within a tree. As this type of information is orthogonal to the one commonly exploited by tree kernels, the two can be combined to enhance state-of-the-art accuracy of tree kernels. In this brief, our attention is focused on subtree kernels.
View Article and Find Full Text PDFBackground: The identification of robust lists of molecular biomarkers related to a disease is a fundamental step for early diagnosis and treatment. However, methodologies for biomarker discovery using microarray data often provide results with limited overlap. It has been suggested that one reason for these inconsistencies may be that in complex diseases, such as cancer, multiple genes belonging to one or more physiological pathways are associated with the outcomes.
View Article and Find Full Text PDFIEEE Trans Neural Netw
December 2009
The development of neural network (NN) models able to encode structured input, and the more recent definition of kernels for structures, makes it possible to directly apply machine learning approaches to generic structured data. However, the effectiveness of a kernel can depend on its sparsity with respect to a specific data set. In fact, the accuracy of a kernel method typically reduces as the kernel sparsity increases.
View Article and Find Full Text PDF